Open Access
Issue
Cah. Agric.
Volume 25, Number 1, Janvier-Février 2016
Article Number 15006
Number of page(s) 8
Section Études originales / Original Studies
DOI https://doi.org/10.1051/cagri/2016004
Published online 15 March 2016
  • Akobundu IO, Agyakwa CW. 1987. A handbook of West African weeds. Ibadan, Nigeria: IITA. [Google Scholar]
  • Camara M, Kebbeh M, Miezan K. 2008. Intensification of rice-growing in the lowlands in the district of Sine-Saloum (Senegal). Cah. Agric. 17: 451– 455. [Google Scholar]
  • Cope JS, Corney D, Clark JY, Remagnino P, Wilkin P. 2012. Plant species identification using digital morphometrics: a review. Exp. Syst. Appl. 39: 7562– 7573. [CrossRef] [Google Scholar]
  • Diagne A, Amovin-Assagba E, Futakuchi K, Wopereis MCS. 2013. Estimation of cultivated area, number of farming households and yield for major rice-growing environments in Africa. In: Wopereis MCS, Johnson DE, Ahmadi N, Tollens E, Jalloh A, eds. Realizing Africa's rice promise. Wallingford, Oxfordshire (United Kingdom): CABI, pp. 35–45. [Google Scholar]
  • Grard P, Homsombath K, Kessler P, et al. 2006. Oswald V1. 0: a multimedia identification system for the major weeds of rice paddy fields of Cambodia and Lao PDR. France: CIRAD, Computer Application. [Google Scholar]
  • Grard P, Le Bourgeois T, Merlier H. 2010. Adventrop V.1.5. Les adventices d’Afrique soudano-sahélienne. Montpellier (France): CIRAD, Computer Application. [Google Scholar]
  • Grard P, Le Bourgeois T, Rodenburg JP, et al. 2012. AFROweeds V.1.0: African weeds of rice. Montpellier (France) & Cotonou (Benin): CIRAD-AfricaRice, Computer Application. [Google Scholar]
  • Ivens GW. 1989. East African weeds and their control. Nairobi: Oxford University Press. [Google Scholar]
  • Johnson DE. 1997. Weeds of rice in West Africa. Bouaké: WARDA - DFID - CTA. [Google Scholar]
  • Le Bourgeois T, Merlier H. 1995. Adventrop : les adventrices d’Afrique soudano-sahélienne. Montpellier (France): CIRAD. [Google Scholar]
  • Le Bourgeois T, Carrara A, Dodet M, et al. 2008. Advent-OI : principales adventices des îles du sud-ouest de l’Océan Indien. Montpellier (France): CIRAD, Computer Application. [Google Scholar]
  • Nhamo N, Rodenburg J, Zenna N, Makombe G, Luzi-Kihupi A. 2014. Narrowing the rice yield gap in East and Southern Africa: Using and adapting existing technologies. Agric. Syst. 131: 45– 55. [CrossRef] [Google Scholar]
  • Parsons DJ, Benjamin LR, Clarke J, et al. 2009. Weed Manager-A model-based decision support system for weed management in arable crops. Comput. Electron. Agric. 65: 155– 167. [CrossRef] [Google Scholar]
  • Pertot I, Kuflik T, Gordon I, Freeman S, Elad Y. 2012. Identificator: A web-based tool for visual plant disease identification, a proof of concept with a case study on strawberry. Comput. Electron. Agric. 84: 144– 154. [CrossRef] [Google Scholar]
  • Rodenburg J, Johnson DE. 2009. Weed management in rice-based cropping systems in Africa. Adv. Agron. 103: 149– 218. [CrossRef] [Google Scholar]
  • Schut M, Rodenburg J, Klerkx L, Kayeke J, van Ast A, Bastiaans L. 2015a. RAAIS: Rapid Appraisal of Agricultural Innovation Systems (Part II). Integrated analysis of parasitic weed problems in rice in Tanzania. Agric. Syst. 132: 12– 24. [CrossRef] [Google Scholar]
  • Schut M, Rodenburg J, Klerkx L, Hinnou LC, Kayeke J, Bastiaans L. 2015b. Participatory appraisal of institutional and political constraints and opportunities for innovation to address parasitic weeds in rice. Crop Prot. 74: 158– 170. [CrossRef] [Google Scholar]
  • Seck PA, Diagne A, Mohanty S, Wopereis MCS. 2012. Crops that feed the world 7: Rice. Food Secur. 4: 7– 24. [CrossRef] [Google Scholar]
  • Seck PA, Togola A, Toure A, Diagne A. 2013. Propositions for optimizing the performance of rice production in West Africa. Cah. Agric. 22: 361– 368. [Google Scholar]
  • Yanikoglu B, Aptoula E, Tirkaz C. 2014. Automatic plant identification from photographs. Mach. Vis. Appl. 25: 1369– 1383. [CrossRef] [Google Scholar]
  • Zimdahl RL. 2007. Fundamentals of weed science. London: Academic Press. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.