Issue
Cah. Agric.
Volume 27, Number 2, Mars-Avril 2018
Les agricultures face au changement climatique. Coordonnateur : Emmanuel Torquebiau
Article Number 26001
Number of page(s) 7
Section Options / Options
DOI https://doi.org/10.1051/cagri/2018010
Published online 19 March 2018
  • Altieri MA, Nicholls CI, Henao A, Lana MA. 2015. Agroecology and the design of climate change-resilient farming systems. Agronomy for Sustainable Development 35(3): 869–890. [CrossRef] [Google Scholar]
  • Andrieu N, Sogoba B, Zougmore R, Howland F, Samake O, Bonilla-Findji O, et al. 2017. Prioritizing investments for climate-smart agriculture: Lessons learned from Mali. Agricultural Systems 154: 13–24. [CrossRef] [Google Scholar]
  • Bormann H, Ahlhorn F, Klenke T. 2012. Adaptation of water management to regional climate change in a coastal region – Hydrological change vs community perception and strategies. Journal of Hydrology 454: 64–75. DOI: 10.1016/j.jhydrol.2012.05.063. [CrossRef] [Google Scholar]
  • Campbell BM, Thornton P, Zougmoré R, Van Asten P, Lipper L. 2014. Sustainable intensification: What is its role in climate smart agriculture? Current Opinion in Environmental Sustainability 8: 39–43. [CrossRef] [Google Scholar]
  • Campbell BM, Corner-Dolloff C, Girvetz E, Loboguerrero AM, Ramirez-Villegas J. 2016. Reducing risks to food security from climate change. Global Food Security 11: 34–43. [CrossRef] [Google Scholar]
  • Caron P, Treyer S. 2015. Climate-Smart Agriculture and International Climate Change Negotiation Forums. In: Torquebiau E, ed. Climate change and agriculture worldwide. Dordrecht (Netherlands): Springer, pp. 325–336. [Google Scholar]
  • Chatrchyan AM, Chaopricha NT, Erlebacher RC, Chan J, Tobin D, Allred SB. 2016. Understanding US Farmer Views and Actions on Climate Change. Cornell Institute for Climate Smart Solutions Research and Policy Brief, Issue 1, March 2016. [Google Scholar]
  • Chatrchyan AM, Yin C, Torquebiau E, Nagothu US. 2018. Multi-level policy measures to support sustainable agriculture intensification for smallholders. In: Nagothu US, ed. Agricultural development and sustainable intensification technology and policy challenges in the face of climate change. London: Routledge, 328 p. [Google Scholar]
  • Chitakira M, Torquebiau E. 2010. Barriers and coping mechanisms relating to agroforestry adoption by smallholder farmers in Zimbabwe. Journal of Agricultural Education and Extension 16(2): 147–160. https://doi.org/10.1080/13892241003651407. [CrossRef] [Google Scholar]
  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, et al. 2007. Couplings between changes in the climate system and biogeochemistry. In: Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. [Google Scholar]
  • Fallot A. 2016. Témoignage sur la conférence « Climate-smart agriculture 2015 » (Montpellier, 16–18 mars 2015). Natures Sciences Sociétés 24: 151–153. DOI: 10.1051/nss/2016013. [CrossRef] [EDP Sciences] [Google Scholar]
  • FAO. 2010. “Climate-Smart” Agriculture – Policies, Practices and Financing for Food Security, Adaptation and Mitigation. Rome (Italy): FAO. Available from http://www.fao.org/docrep/013/i1881e/i1881e00.htm. [Google Scholar]
  • FAO. 2013. Climate-smart Agriculture Sourcebook. Rome (Italy): FAO. [Google Scholar]
  • FAO. 2015. Final Report for the International Symposium on Agroecology for Food Security and Nutrition, 18 and 19 September 2014. Rome (Italy): FAO. [Google Scholar]
  • Garnett T, Appleby MC, Balmford A, Bateman, IJ, Benton TG, Bloomer P, et al. 2013. Sustainable intensification in agriculture: premises and policies. Science 341(6141): 33–34. [Google Scholar]
  • Grau R, Kuemmerle T, Macchi L. 2013. Beyond “land sparing versus land sharing”: environmental heterogeneity, globalization and the balance between agricultural production and nature conservation. Current Opinion in Environmental Sustainability 5: 477–483. [CrossRef] [Google Scholar]
  • Hammond J, Fraval S, van Etten J, Suchini JG, Mercado L, Pagella T, et al. 2017. The Rural Household Multi-Indicator Survey (RHoMIS) for rapid characterisation of households to inform climate smart agriculture interventions: Description and applications in East Africa and Central America. Agricultural Systems 151: 225–233. https://doi.org/10.1016/j.agsy.2016.05.003. [CrossRef] [Google Scholar]
  • Harvey CA, Chacón M, Donatti CI, Garen E, Hannah L, Andrade A, et al. 2014. Climate-smart landscapes: opportunities and challenges for integrating adaptation and mitigation in tropical agriculture. Conservation Letters 7(2): 77–90. [CrossRef] [Google Scholar]
  • IAASTD. 2009. International Assessment of Agricultural Knowledge, Science and Technology for Development. Agriculture at the Crossroads: The Global Report. Washington DC (USA): Island Press. [Google Scholar]
  • Khosla R, Inman D, Westfall DG, Riech R, Frasier WM, Mzuku M, et al. 2008. A synthesis of multi-disciplinary research in precision agriculture: Site-specific management zones in the semi-arid western Great Plains of the USA. J of Preci Ag 9(1–2): 85–100. [CrossRef] [Google Scholar]
  • Lal R, Negassa W, Lorenz K. 2015. Carbon sequestration in soil. Current Opinion in Environmental Sustainability 15: 79–86. [CrossRef] [Google Scholar]
  • Lassaletta L, Billen G, Grizzetti B, Anglade J, Garnier J. 2014. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environmental Research Letters 9(10): 105011. [CrossRef] [Google Scholar]
  • Lichtfouse E. 2012. Agroecology and strategies for climate change. NY (USA): Springer. [Google Scholar]
  • Lipper L, Thornton P, Campbell BM, Baedeker T, Braimoh A, Bwalya M, et al. 2014. Climate-smart agriculture for food security. Nature Climate Change 4: 1068–1072. [CrossRef] [Google Scholar]
  • Lipper L, McCarthy N, Zilberman D, Asfaw S, Branca G (ed). 2017. Climate smart agriculture: building resilience to climate change. Natural Resource Management and Policy Series, Vol. 52. Dordrecht (Netherlands): Springer, 629 p. [Google Scholar]
  • Minang P, van Noordwijk M, Freeman OE, Mbow C, de Leeuw J, Catacutan D (eds). 2015. Climate-smart landscapes: Multifunctionality in practice. Nairobi (Kenya): World Agroforestry Centre (ICRAF), 404 p. [Google Scholar]
  • Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D, Chambers A, et al. 2017. Soil carbon 4 per mille. Geoderma 292: 59–86. [CrossRef] [Google Scholar]
  • Oxford Dictionnaries. 2016. http://www.oxforddictionaries.com/fr/definition/anglais/agroecology (accessed 5 February 2016). [Google Scholar]
  • Pimbert M. 2015. Agroecology as an alternative vision to conventional development and Climate-Smart Agriculture. Development 58(2–3): 286–298. [CrossRef] [Google Scholar]
  • Renwick AR, Vickery JA, Potts SG, Bolwig S, Nalwanga D, Pomeroy DE, et al. 2014. Achieving production and conservation simultaneously in tropical agricultural landscapes. Agriculture, Ecosystems & Environment 192: 130–134. [CrossRef] [Google Scholar]
  • Richardson RB. 2010. Ecosystem services and food security: economic perspectives on environmental sustainability. Sustainability 2(11): 3520–3548. [Google Scholar]
  • Rosegrant MW, Sulser TB, Mason-D’Croz D, Cenacchi N, Nin-Pratt A, Dunston S, et al. 2017. Quantitative foresight modeling to inform the CGIAR research portfolio. Washington (USA): IFPRI. [Google Scholar]
  • Rosenstock TS, Lamanna C, Chesterman S, Bell P, Arslan A, Richards M, et al. 2016. The scientific basis of climate-smart agriculture: A systematic review protocol. CCAFS Working Paper no. 138. Copenhagen (Denmark): CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Available at www.ccafs.cgiar.org. [Google Scholar]
  • Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn P. 2013. The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies. Agricultural and Forest Meteorology 170: 166–182. [CrossRef] [Google Scholar]
  • Saj S, Torquebiau E, Hainzelin E, Pagès J, Maraux F. 2017. The way forward: an agroecological perspective for Climate-Smart Agriculture. Agriculture, Ecosystems and Environment 250: 20–24. DOI: 10.1016/j.agee.2017.09.003. [CrossRef] [Google Scholar]
  • Sendzimir J, Reij C, Magnuszewski P. 2011. Rebuilding resilience in the Sahel: regreening in the Maradi and Zinder regions of Niger. Ecology and Society 16(3): 1. [Google Scholar]
  • Soussana JF, Lutfalla S, Ehrhardt F, Rosenstock T, Lamanna C, Havlík P, et al. 2018. Matching policy and science: rationale for the ʻ4 per 1000 – soils for food security and climate’ initiative. Soil & Tillage Research. In press. DOI: 10.1016/j.still.2017.12.002. [Google Scholar]
  • Steenwerth K, Hodson A, Bloom A, Carter M, Cattaneo A, Chartres C, et al. 2014. Climate-smart agriculture global research agenda: scientific basis for action. Agric & Food Secur 3: 1–39. [CrossRef] [Google Scholar]
  • Thakur AK, Uphoff NT, Stoop WA. 2016. Scientific Underpinnings of the System of Rice Intensification (SRI): What is known so far? Advances in Agronomy 135: 147–179. [CrossRef] [Google Scholar]
  • Tissier J, Grosclaude JY. 2015. What about climate-smart agriculture? In: Torquebiau E, ed. Climate change and agriculture worldwide. Dordrecht (Netherlands): Springer, pp. 313–324. [Google Scholar]
  • Torquebiau E (ed). 2016. Climate change and agriculture worldwide. Dordrecht (Netherlands): Springer, 348 p. [Google Scholar]
  • Torquebiau E, Berry D, Caron P, Grosclaude JY. 2016. New research perspectives to address climate challenges facing agriculture worldwide. In: Torquebiau E, ed. Climate change and agriculture worldwide. Netherlands: Springer, pp. 337–348. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.