Open Access
Cah. Agric.
Volume 33, 2024
Article Number 1
Number of page(s) 10
Published online 18 January 2024
  • Ali HTO, Niculescu S, Sellin V, Bougault C. 2017. Contribution de la nouvelle série d’images Sentinel-1 pour le suivi de la végétation côtière dans le Pays de Brest. Spatial analysis and GEOmatics. Rouen (France): INSA de Rouen. hal-01650671. [Google Scholar]
  • Belcore E, Piras M. 2023. Sentinel 2 high-resolution land cover mapping in Sub-Saharan Africa with Google Earth Engine. International Conference on Geographical Information Systems Theory, Applications and Management, GISTAM, pp. 27–36. doi: 10.5220/0011746500003473. [Google Scholar]
  • Bofana J, Zhang M, Nabil M, Wu B, Tian F, Liu W, et al. 2020. Comparison of different cropland classification methods under diversified agroecological conditions in the Zambezi River Basin. Remote Sensing 12(13): 2096. doi: 10.3390/rs12132096. [CrossRef] [Google Scholar]
  • Breiman L. 2001. Random forests. Machine Learning 45: 5–32. doi: 10.1023/A:1010933404324. [NASA ADS] [CrossRef] [Google Scholar]
  • Breiman L, Friedman JH, Olshen RA, Stone CJ. 1984. Classification and regression trees. Boca Raton, London, New York, Washington, D.C.: Taylor & F. Chapman & Hall/CRC Boca, 31 p. [Google Scholar]
  • Burges CJC. 1998. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2: 121–167. doi: 10.1023/A:1009715923555. [Google Scholar]
  • Denis A. 2013. Travaux pratiques de télédétection spatiale. Belgique: Unité Eau Environnement Développement (EED), Arlon Campus Environnement, Université de Liège, 103 p. [Google Scholar]
  • Dezetter A, Traore S, Bicaba K. 1998. Gestion intégrée et variabilité des ressources en eau dans le sud-ouest du Burkina Faso. Water resources variabililty in Africa during the XXth Century: International Conference, Abidjan (Côte d’Ivoire). Wallingford: AISH, pp. 387–394. [Google Scholar]
  • European Space Agency. 2020. Sentinel-1 Observation Scenario. [2020/04/29]. [Google Scholar]
  • European Space Agency. 2023. Resolution and Swath. Sentinel Online. [2023/05/25]. [Google Scholar]
  • Friedman JH. 2001. Greedy function approximation: A gradient boosting machine. The Annals of Statistics 29(5): 1189–1232. doi: 10.1214/aos/1013203451. [CrossRef] [Google Scholar]
  • Gao BC. 1996. NDWI- A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment 58(3): 257–266. doi: 10.1016/S0034-4257(96)00067-3. [CrossRef] [Google Scholar]
  • Gao Q, Zribi M, Escorihuela MJ, Baghdadi N. 2017. Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at 100 m resolution. Sensors 17(9): 1966. doi: 10.3390/s17091966. [CrossRef] [PubMed] [Google Scholar]
  • Gao Q, Zribi M, Escorihuela MJ, Baghdadi N, Segui PQ. 2018. Irrigation mapping using Sentinel-1 time series at field scale. Remote Sensing 10(9): 1495. doi: 10.3390/rs10091495. [CrossRef] [Google Scholar]
  • Gascon F, Bouzinac C, Thépaut O, Jung M, Francesconi B, Louis J, et al. 2017. Copernicus Sentinel-2A calibration and products validation status. Remote Sensing 9(6): 584. doi: 10.3390/rs9060584. [CrossRef] [Google Scholar]
  • Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202: 18–27. doi: 10.1016/j.rse.2017.06.031. [CrossRef] [Google Scholar]
  • Jin Z, Azzari G, You C, Di Tommaso S, Aston S, Burke M, et al. 2019. Smallholder maize area and yield mapping at national scales with Google Earth Engine. Remote Sensing of Environment 228: 115–128. doi: 10.1016/j.rse.2019.04.016. [CrossRef] [Google Scholar]
  • Kambou D. 2019. Évaluation des performances techniques de l’irrigation au Burkina Faso. Essai présenté en vue de l’obtention du grade de docteur en sciences agronomiques et ingénierie biologique. Gembloux (Belgique): Agro-bio-tech, Université de Liège, 190 p. [Google Scholar]
  • Kriegler FJ, Malila WA, Nalepka RF, Richardson W. 1969. Preprocessing transformations and their effects on multispectral recognition. Remote sensing of environment VI: 97. [Google Scholar]
  • Labatut V, Cherifi H. 2012. Accuracy measures for the comparison of classifiers. Istanbul (Turkey)/Dijon(France): Computer Science Department, Galatasaray University/Faculté des Sciences, University of Burgundy, 5 p. doi: 10.48550/arXiv.1207.3790. [Google Scholar]
  • Landis JR, Koch GG. 1977. The measurement of observer agreement for categorical data. Biometrics 33(1): 159. doi: 10.2307/2529310. [CrossRef] [Google Scholar]
  • Langat PK, Kumar L, Koech R, Ghosh MK. 2019. Monitoring of land use/land-cover dynamics using remote sensing: a case of Tana River Basin, Kenya. Geocarto International 36(13): 1470–1488. doi: 10.1080/10106049.2019.1655798. [Google Scholar]
  • Lemoine G, Léo O. 2015. Crop mapping applications at scale: Using google earth engine to enable global crop area and status monitoring using free and open data sources. Milan (Italy): 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1496–1499, doi: 10.1109/IGARSS.2015.7326063. [Google Scholar]
  • Mahdianpari M, Salehi B, Mohammadimanesh F, Homayouni S, Gill E. 2019. The first wetland inventory map of newfoundland at a spatial resolution of 10 m using Sentinel-1 and Sentinel-2 data on the Google Earth Engine cloud computing platform. Remote Sensing 11(1): 43. doi: 10.3390/rs11010043. [Google Scholar]
  • Orlove B, Roncoli C, Dowd-uribe B. 2015. Fluid entitlements: constructing and contesting water allocations in Burkina Faso, West Africa. In Hastrup K, Hastrup F, eds. Waterworlds: Anthropology in Fluid Environments. New York, Oxford: Berghahn Books, pp. 46–74. doi: 10.1515/9781782389477-005. [Google Scholar]
  • Palé S, Traoré F, Wellens J, Tychon B. 2019. Diagnostic d’un système d’informations de gestion de l’eau à usage agricole dans le sous-bassin versant de la Haute-Comoé, Burkina Faso. GEO-ECO-TROP 43(3): 433–443. [Google Scholar]
  • Smith V, Portillo-Quintero C, Sanchez-Azofeifa A, Hernandez-Stefanoni JL. 2019. Assessing the accuracy of detected breaks in Landsat time series as predictors of small scale deforestation in tropical dry forests of Mexico and Costa Rica. Remote Sensing of Environment 221: 707–721. doi: 10.1016/j.rse.2018.12.020. [CrossRef] [Google Scholar]
  • Traoré F, Bonkoungou J, Compaoré J, Kouadio L, Wellens J, Hallot E, et al. 2019. Using multi-temporal Landsat images and support vector machine to assess the changes in agricultural irrigated areas in the Mogtedo Region, Burkina Faso. Remote Sensing 11(12): 1442. doi: 10.3390/rs11121442. [CrossRef] [Google Scholar]
  • Traoré F, Cornet Y, Denis A, Wellens J, Tychon B. 2013. Monitoring the evolution of irrigated areas with Landsat images using backward and forward change detection analysis in the Kou watershed, Burkina Faso. Geocarto International 28(8): 733–752. doi: 10.1080/10106049.2012.744100. [CrossRef] [Google Scholar]
  • Weitkamp T, Jan Veldwisch G, Karimi P, de Fraiture C. 2023. Mapping irrigated agriculture in fragmented landscapes of sub-Saharan Africa: An examination of algorithm and composite length effectiveness. International Journal of Applied Earth Observation and Geoinformation 122: 103418. doi: 10.1016/j.jag.2023.103418. [CrossRef] [Google Scholar]
  • Xu H. 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing 27(14): 3025–3033. doi: 10.1080/01431160600589179. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.