Cah. Agric.
Volume 26, Number 6, Novembre-Décembre 2017
Les agricultures face au changement climatique. Coordonnateur : Emmanuel Torquebiau
Article Number 66001
Number of page(s) 8
Section Option (article d'opinion)
Published online 10 November 2017
  • Balesdent J, Arrouays D. 1999. An estimate of the net annual carbon storage in French soils induced by land use change from 1900 to 1999. CR Acad Agri 85: 265–277. [Google Scholar]
  • Bouman BAM, Lampayan RM, Tuong TP. 2007. Water management in irrigated rice: coping with water scarcity. Los Baños (Laguna): IRRI, 54 p. Available from Site consulté le 28-07-2017. [EDP Sciences] [Google Scholar]
  • Caron P. 2016. Climate-smart agriculture : émergence d'un concept, mise en politique, mise en sciences et controverses. Natures, Sciences, Sociétés 24(2): 147–150. Disponible sur Site consulté le 28-07-2017. [CrossRef] [EDP Sciences] [Google Scholar]
  • Caron P, Treyer S. 2015. L'agriculture climato-intelligente et les arènes de la négociation internationale sur le changement climatique. In: Torquebiau E, ed. Changement climatique et agricultures du monde. Versailles: Quæ, pp. 303–313. [Google Scholar]
  • FAO. 2010. “Climate-Smart” Agriculture – Policies, Practices and Financing for Food Security, Adaptation and Mitigation. Available from Site consulté le 28-07-2017. [Google Scholar]
  • FAO. 2011. Pour une agriculture intelligente face au climat – Politiques, pratiques et financements en matière de sécurité alimentaire, d'atténuation et d'adaptation. Disponible sur Site consulté le 28-07-2017. [Google Scholar]
  • FAO. 2013. Climate-smart agriculture sourcebook. Rome: FAO, 570 p. [EDP Sciences] [Google Scholar]
  • Garnett T. 2011. Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? Food Policy 36: S23–S32. [CrossRef] [Google Scholar]
  • Giller KE, Andersson JA, Corbeels M, Kirkegaard J, Mortensen D, Erenstein O, et al. 2015. Beyond conservation agriculture. Frontiers in plant science 6: 870. [CrossRef] [PubMed] [Google Scholar]
  • Grau R, Kuemmerle T, Macchi L. 2013. Beyond “land sparing versus land sharing”: environmental heterogeneity, globalization and the balance between agricultural production and nature conservation. Curr Opin Environ Sustain 5: 477–483. [Google Scholar]
  • Harvey CA, Chacón M, Donatti CI, Garen E, Hannah L, Andrade A, et al. 2014. Climate‐smart landscapes: opportunities and challenges for integrating adaptation and mitigation in tropical agriculture. Conservation Letters 7(2): 77–90. [CrossRef] [Google Scholar]
  • Horlings LG, Marsden TK. 2011. Towards the real green revolution? Exploring the conceptual dimensions of a new ecological modernisation of agriculture that could “feed the world”. Global Environmental Change 21(2): 441–452. [CrossRef] [Google Scholar]
  • IPCC. 2014. Summary for Policymakers. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, et al., eds. Climate Change 2014: mitigation of climate change. Contribution of working group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York (USA): Cambridge University Press. [Google Scholar]
  • Joulian C, Escoffier S, Le Mer J, Neue HU, Roger PA. 1997. Populations and potential activities of methanogens and methanotrophs in rice fields: relations with soil properties. Eur J Soil Biol 33: 105–116. [Google Scholar]
  • Lal R. 2016. Beyond COP 21: Potential and challenges of the “4 per Thousand” initiative. Journal of Soil and Water Conservation 71(1): 20A–25A. DOI: 10.2489/jswc.71.1.20A. [CrossRef] [Google Scholar]
  • Le Quéré C, Moriarty R, Andrew RM, Peters GP, Ciais P, Friedlingstein P, et al. 2015. Global carbon budget 2014. Earth System Science Data 7(1): 47–85. [CrossRef] [Google Scholar]
  • Lipper L, Thornton P, Campbell BM, Baedeker T, Braimoh A, Bwalya M, et al. 2014. Climate-smart agriculture for food security. Nature climate change 4 : 1068–1072. Available from [Google Scholar]
  • Minang PA, van Noordwijk M, Freeman OE, Mbow C, de Leeuw J, Catacutan D. 2015. Climate-smart landscapes: multifunctionality in Practice. Nairobi (Kenya): World Agroforestry Centre (ICRAF), 404 p. [Google Scholar]
  • Nitschke CR, Innes JL. 2008. Integrating climate change into forest management in South-Central British Columbia: an assessment of landscape vulnerability and development of a climate-smart framework. Forest Ecology and Management 256(3): 313–327. [CrossRef] [Google Scholar]
  • Papy F. 2016. Les agricultures du monde face au dérèglement du climat. Courrier de l'environnement de l'INRA 66: 25–33. [Google Scholar]
  • Perfecto I, Vandermeer JH, Wright AL. 2009. Nature's matrix: linking agriculture, conservation and food sovereignty. London: Earthscan, 242 p. [EDP Sciences] [Google Scholar]
  • Powlson DS, Stirling CM, Thierfelder C, White RP, Jat ML. 2016. Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agroecosystems? Agriculture, Ecosystems & Environment 220: 164–174. [Google Scholar]
  • Reij C, Tappan G, Smale M. 2009. Agro-environmental transformation in the Sahel: another kind of “Green Revolution”. IFPRI Discussion Paper 00914. Washington DC: International Food Policy Research Institute. Available from Site consulté le 28-07-2017. [Google Scholar]
  • Saj S, Torquebiau E, Hainzelin E, Pagès J, Maraux F. 2017. The way forward: an agroecological perspective for Climate-Smart Agriculture. Agriculture, Ecosystems and Environment 250: 20–24. DOI: 10.1016/j.agee.2017.09.003. [CrossRef] [Google Scholar]
  • Saunois M, Jackson RB, Bousquet P, Poulter B, Canadell JG. 2016. The growing role of methane in anthropogenic climate change. Environmental Research Letters 11(12): 120207. [CrossRef] [Google Scholar]
  • Sommer R, Bossio D. 2014. Dynamics and climate change mitigation potential of soil organic carbon sequestration. Journal of Environmental Management 144: 83–87. [CrossRef] [PubMed] [Google Scholar]
  • Tatsidjodoung P, Dabat MH, Blin J. 2012. Insights into biofuel development in Burkina Faso: potential and strategies for sustainable energy policies. Renewable and Sustainable Energy Reviews 16(7): 5319–5330. [CrossRef] [Google Scholar]
  • Tissier J, Grosclaude JY, 2015. Que penser de l'agriculture climato-intelligente ? In: Torquebiau E, ed. Changement climatique et agricultures du monde. Versailles: Quæ, pp. 291–302. [Google Scholar]
  • Vayssières J, Assouma MH, Lecomte P, Hiernaux P, Bourgoin J, Jankowski F, et al. 2017. L'élevage au cœur de paysages « climato-intelligents » en Afrique de l'Ouest. In: Caron P, Valette E, Wassenaar T, Coppens d'Eeckenbrugge G, Papazian V, eds. Des territoires vivants pour transformer le monde. Versailles: Quae, pp. 114–120. [Google Scholar]
  • Wezel A, Bellon S, Doré T, Francis C, Vallod D, David C. 2009. Agroecology as a science, a movement and a practice. A review. Agronomy for Sustainable Development 29: 503–515. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.