Open Access
Cah. Agric.
Volume 29, 2020
Article Number 22
Number of page(s) 9
Published online 06 August 2020
  • Ali Dib T, Monneveux P, Araus JL. 1992. Adaptation à la sécheresse et notion d’idéotype chez le blé dur. II. Caractères physiologiques d’adaptation. Agronomie 12(5): 381–393. [CrossRef] [Google Scholar]
  • Allen RG, Pereira LS, Raes D, Smith M. 1998. Crop evapotranspiration − guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. Rome, Italy: FAO, 50 p. [Google Scholar]
  • Amokrane A, Bouzerzour H, Benbelkacem A, Djeh A, Mahe A. 2002. Étude comparative des variétés de blé dur (Triticum durum Desf.) d’origine algérienne, syrienne et européenne, sous climat méditerranéen. Sciences et Technologies 1: 33–38. [Google Scholar]
  • Baldy C. 1974. Étude fréquentielle du climat, son influence sur la production des principales zones céréalières d’Algérie. Doc CCCE. Paris: CCCE, 152 p. [Google Scholar]
  • Bessaoud O. 2019. Rapport de synthèse sur l’agriculture en Algérie., site consulté le 5/04/2020. [Google Scholar]
  • Bindi M, Olesen JE. 2011. The responses of agriculture in Europe to climate change. Reg Environ Change 11: 151–158. DOI: 10.1007/s10113-010-0173-x. [Google Scholar]
  • Bouzerzour H, Dekhili M. 1995. Heritabilities, gains from selection and genetic correlations for grain yield of barley grown in two contrasting environments. Fields Crops Res 41: 173–178. DOI: 10.1016/0378-4290(95)00005-B. [CrossRef] [Google Scholar]
  • Bucchignani E, Mercogliano P, Panitz H-J, Montesarchio M. 2018. Climate change projections for the Middle East–North Africa domain with COSMO-CLM at different spatial resolutions. Adv Clim Change Res 9: 66–80. DOI: 10.1016/j.accre.2018.01.004. [CrossRef] [Google Scholar]
  • Chourghal N, Lhomme JP, Huard F, Aidaoui A. 2016. Climate change in Algeria and its impact on durum wheat. Reg Environ Change 16: 1623–1634. DOI: 10.1007/s10113-015-0889-8. [Google Scholar]
  • Christensen JH, Krishna Kumar K, Aldrian E, et al. 2013. Climate phenomena and their relevance for future regional climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, eds. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 1217–1310. [Google Scholar]
  • Déqué M. 2007. Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Glob Planet Change 57: 16–26. DOI: 10.1016/j.gloplacha.2006.11.030. [Google Scholar]
  • Diffenbaugh NS, Giorgi F. 2012. Climate change hotspots in the CMIP5 global climate model ensemble. Clim Change 114: 813–822. DOI: 10.1007/s10584-012-0570-x. [CrossRef] [PubMed] [Google Scholar]
  • Doorenbos J, Kassam A. 1979. Yield response to water. FAO Irrigation and Drainage Paper 33. Rome, Italy: Editions FAO, 40 p. [Google Scholar]
  • Dubrovský M, Hayes M, Duce P, Trnka M, Svoboda M, Zara P. 2014. Multi-GCM projections of future drought and climate variability indicators for the Mediterranean region. Reg Environ Change 14: 1907–1919. DOI: 10.1007/s10113-013-0562-z. [Google Scholar]
  • El-Shaer MH, Rosenzweig C, Iglesias A, Eid HM, Hillel D. 1996. Possible scenarios for Egyptian agriculture in the future. Mitig Adapt Strut Glob Change 1(3): 233–250. DOI: 10.1007/BF00517805. [CrossRef] [Google Scholar]
  • Ferris R, Moriondo M, Bindi M. 2011. Probabilistic assessments of climate change impacts on durum wheat in the Mediterranean region. Nat Hazards Earth Syst Sci (11): 1293–1302. DOI: 10.5194/nhess-11-1293-201. [CrossRef] [Google Scholar]
  • Giannakopoulos C, Le Sager P, Bindi M, Moriondo M, Kostopoulou E, Goodess CM. 2009. Climatic changes and associated impacts in the Mediterranean resulting from global warming. Glob Planet Change 68: 209–224. DOI: 10.1016/j.gloplacha.2008.02.002. [Google Scholar]
  • Gibelin AL, Déqué M. 2003. Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Climate Dyn 20: 327–339. DOI: 10.1007/s00382-002-0277-1. [Google Scholar]
  • Hertig E, Tramblay Y. 2017. Regional downscaling of Mediterranean droughts under past and future climatic conditions. Glob Planet Change 151: 36–48. DOI: 10.1016/j.gloplacha.2016.10.015. [Google Scholar]
  • Iglesias A, Minguez MI. 1995. Perspectives for maize production in Spain under climate change. In: Rosenzweig C, Iglesias A, eds. Agriculture: crop modeling study. Washington, DC: EPA. DOI: 10.2134/asaspecpub59.c13. [Google Scholar]
  • IPCC. 2001. IPCC impacts, adaptation and vulnerability. In: McCarthy JJ, Canziani OF, Leary NA, Dokken DG, White KS, eds. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK, and New York, USA: Cambridge University Press, 1032 p. [Google Scholar]
  • IPCC. 2013. Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, eds. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 1535 p. [Google Scholar]
  • ITGC. 2001. La culture intensive du blé, 2e éd. actualisée. Alger: Éditions ITGC, 45 p. [Google Scholar]
  • Jamieson PD, Semenov MA, Brooking IR, Francis GS. 1998. Sirius: a mechanistic model of wheat response to environmental variation. Eur J Agron 8: 161–179. DOI: 10.1016/S1161-0301(98)00020-3. [Google Scholar]
  • Jonard P, Koller J, Vincent A. 1952. Évolution de la tige et de l’épi chez la variété de blé Vilmorin 27 au cours de la période de reproduction. Ann Amelior Plant 2(1): 31–54. [Google Scholar]
  • Kapetanaki G, Rosenzweig C. 1997. Impact of climate change on maize yield in central and northern Greece: a simulation study with CERES-Maize. Mitig Adapt Strateg 1(3): 251–271. DOI: 10.1023/B:MITI.0000018044.48957.28. [CrossRef] [Google Scholar]
  • Labad R, Hartani T. 2015. Direct seeding emergence in the agricultural farms of the Setif plain (Algeria). In: Sixth International Scientific Agricultural Symposium “Agrosym 2015”. Jahorina, Bosnie-Herzegovine. Book of proceedings. pp. 1217–1221. DOI: 10.7251/AGSY15051217L. [Google Scholar]
  • Lelieveld J, Proestos Y, Hadjinicolaou P, Tanarhte M, Tyrlis E, Zittis G. 2016. Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Clim Chang 137: 245–260. DOI: 10.1007/s10584-016-1665-6. [CrossRef] [Google Scholar]
  • Lhomme JP, Mougou A, Mansour M. 2009. Potential impact of climate change on durum wheat cropping in Tunisia. Clim Change 96: 549–564. DOI: 10.1007/s10584-009-9571-9. [Google Scholar]
  • Lovelli S, Perniola Di Tommaso M, Ventrella D, Moriondo D, Amato M. 2010. Effects of rising atmospheric CO2 on crop evapotranspiration in a Mediterranean area. Agric Water Manage 97(9): 1287–1292. DOI: 10.1016/j.agwat.2010.03.005. [CrossRef] [Google Scholar]
  • Manderscheid R, Burkart S, Bramm A, Weigel HJ. 2003. Effect of CO2 enrichment on growth and daily radiation use efficiency of wheat in relation to temperature and growth stage. Eur J Agron 19: 411–425. DOI: 10.1016/S1161-0301(02)00133-8. [Google Scholar]
  • Mertz O, Halsnaes K, Olesen JE, Rasmussen K. 2009. Adaptation to climate change in developing countries. Environ Manage 43: 743–752. DOI: 10.1007/s00267-008-9259-3. [CrossRef] [PubMed] [Google Scholar]
  • Mo F, Sun M, Yan Liu X, et al. 2016. Phenological responses of spring wheat and maize to changes in crop management and rising temperatures from 1992 to 2013 across the Loess Plateau. Field Crop Res (196): 337–347. DOI: 10.1016/j.fcr.2016.06.024. [CrossRef] [Google Scholar]
  • Mohammad W, Shah SM, Shehzadi S, Shah SA. 2012. Effect of tillage, rotation and crop residues on wheat crop productivity, fertilizer nitrogen and water use efficiency and soil organic carbon status in dry area (rainfed) of north-west Pakistan. Journal of Soil Science and Plant Nutrition 12: 715–727. [Google Scholar]
  • Monteith JL. 1977. Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society 281: 277–294. DOI: 10.1098/rstb.1977.0140. [Google Scholar]
  • Moriondo M, Giannakopoulos C, Bindi M. 2011. Climate change impact assessment: the role of climate extremes in crop yield simulation. Clim Change 104: 679–701. DOI: 10.1007/s10584-010-9871-0. [Google Scholar]
  • Ozturk T, Turp M, Türkeş M, Kurnaz M. 2018. Future projections of temperature and precipitation climatology for CORDEX-MENA domain using RegCM4.4. Atmos Res 206: 87–107. DOI: 10.1016/j.atmosres.2018.02.009. [Google Scholar]
  • Patricola CM, Cook K. 2010. Northern African climate at the end of the twenty-first century: an integrated application of regional and global climate models. Clim Dyn 35(1): 193–212. DOI: 10.1007/s00382-009-0623-7. [Google Scholar]
  • Rezaei EE, Siebert S, Hüging H, Hüging H, Ewert F. 2018. Climate change effect on wheat phenology depends on cultivar change. Sci Rep 8: 489. DOI: 10.1038/s41598-018-23101-2. [CrossRef] [PubMed] [Google Scholar]
  • Rosenzweig C, Tubiello FN. 1997. Impacts of global climate change on Mediterranean agriculture: current methodologies and future directions. An introductory essay. Mitig Adapt Strateg Glob Change 1: 219–232. DOI: 10.1007/BF00517804. [CrossRef] [Google Scholar]
  • Saadi S, Todorovic M, Tanasijevic L, Pereira LS, Pizzigalli C, Lionello P. 2015. Climate change and Mediterranean agriculture: impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield. Agric Water Manage 147: 103–115. DOI: 10.1016/j.agwat.2014.05.008. [CrossRef] [Google Scholar]
  • Sacks WJ, Deryng D, Foley JA, Ramankutty N. 2010. Crop planting dates: analysis of global patterns. Glob Ecol Biogeogr 19(5): 607–620. DOI: 10.1111/j.1466-8238.2010.00551.x. [Google Scholar]
  • Sahnoune F, Belhamela M, Zelmatb M, Kerbachic R. 2013. Climate change in Algeria: vulnerability and strategy of mitigation and adaptation. Energy Procedia 36: 1286–1294. DOI: 10.1016/j.egypro.2013.07.145. [Google Scholar]
  • Sanabria J, Lhomme JP. 2013. Climate change and potato cropping in the Peruvian Altiplano. Theor Appl Climatol 112: 683–695. DOI: 10.1007/s00704-012-0764-1. [Google Scholar]
  • Schilling J, Hertig E, Tramblay Y, Scheffran J. 2020. Climate change vulnerability, water resources and social implications in North Africa. Reg Environ Change 20: 15. DOI: 10.1007/s10113-020-01597-7. [Google Scholar]
  • Soltner D. 1987. Les bases de la production végétale. Tome II. Le climat : météorologie-pédologie-bioclimatologie. Éditions Sciences et techniques agricoles, 314 p. [Google Scholar]
  • Supit I, van Diepen CA, Boogaard HL, Ludwig F, Baruth B. 2010. Trend analysis of the water requirements, consumption and deficit of field crops in Europe. Agric Forest Meteorol 150: 77–88. DOI: 10.1016/j.agrformet.2009.09.002. [CrossRef] [Google Scholar]
  • Tanasijevic L, Todorovic M, Pereira LS, Pizzigalli C, Lionello P. 2014. Impacts of climate change on olives crop evapotranspiration and irrigation requirements in the Mediterranean region. Agric Water Manage 144: 54–68. DOI: 10.1016/j.agwat.2014.05.019. [CrossRef] [Google Scholar]
  • Teixeira JL, Fernando RM, Pereira LS. 1995. Irrigation scheduling alternative for limited water supply and drought. ICID J 44: 73–87. [Google Scholar]
  • Todorovic M, Karic B, Pereira LS. 2013. Reference evapotranspiration estimate with limited weather data across a range of Mediterranean climates. J Hydrol 481: 166–176. DOI: 10.1016/j.jhydrol.2012.12.034. [CrossRef] [Google Scholar]
  • Tramblay Y, Somot S. 2018. Future evolution of extreme precipitation in the Mediterranean. Clim Change 151: 289–302. DOI: 10.1007/s10584-018-2300-5. [Google Scholar]
  • Tubiello FN, Donatelli M, Rosenzweig C, Stöckle CO. 2000. Effects of climate change and elevated CO2 on cropping systems: model predictions at two Italian locations. Eur J Agron 13(2–3): 179–189. DOI: 10.1016/S1161-0301(00)00073-3. [Google Scholar]
  • Ventrella D, Charfeddine M, Moriondo M, Rinaldi M, Bindi M. 2012. Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: irrigation and nitrogen fertilization. Reg Environ Change 3: 204–219. DOI: 10.1007/s10113-011-0256-3. [Google Scholar]
  • Waha W, Müller C, Bondeau A, Dietrich JP, Kurukulasuriya P, Heinke J. 2013. Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Global Environ Change 23: 130–143. DOI: 10.1016/j.gloenvcha.2012.11.001. [CrossRef] [Google Scholar]
  • Wang HL, Gan YT, Wanga RY, et al. 2008. Phenological trends in winter wheat and spring cotton in response to climate changes in northwest China. Agric For Meteorol 148: 1242–1251. DOI: 10.1016/j.agrformet.2008.03.003. [Google Scholar]
  • Xiao D, Tao F. 2016. Contributions of cultivar shift, management practice and climate change to maize yield in North China Plain in 1981–2009. Int J Biometeorol 60: 1111–1122. DOI: 10.1007/s00484-015-1104-9. [CrossRef] [PubMed] [Google Scholar]
  • Zairi A, El Amami H, Slatni A, Pereira LS, Rodrigues PN, Machado TG. 2003. Coping with drought: deficit irrigation strategies for cereals and field horticultural crops in Central Tunisia. In: Rossi G, Cancelliere A, Pereira LS, Oweis T, Shatanawi M, Zairi A, eds. Tools for drought mitigation in Mediterranean regions. Dordrecht: Springer, pp. 181–201. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.