Cah. Agric.
Volume 30, 2021
Agriculture et services écosystémiques dans les pays du Sud. Coordonnateurs : Georges Serpantié, Philippe Méral, Fano Andriamahefazafy, Jean-Christophe Castella, Malyne Neang
Article Number 43
Number of page(s) 12
Published online 11 November 2021
  • Abdalla M, Hastings A, Chadwick DR, Jones DL, Evans CD, Jones MB, et al. 2018. Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agriculture, Ecosystems & Environment 253: 62–81. [Google Scholar]
  • ANP. 2020. Administración de Parques Nacionales. [2020/06/10] [Google Scholar]
  • Assouma MH, Hiernaux P, Lecomte P, Ickowicz A, Bernoux M, Vayssières J. 2019. Contrasted seasonal balances in a Sahelian pastoral ecosystem result in a neutral annual carbon balance. Journal of Arid Environments 162: 62–73. [Google Scholar]
  • Bahamonde HA, Gargaglione V, Ormaechea S, Peri PL. 2012. Interacciones ecológicas en bosques de Nothofagus antarctica bajo uso silvopastoril en Patagonia sur continental. Ecosistemas 27(3): 106–115. [Google Scholar]
  • Ballari SA, Valenzuela AEJ, Nuñez MA. 2020. Interactions between wild boar and cattle in Patagonian temperate forest: Cattle impacts are worse when alone than with wild boar. Biological Invasions 22: 1681–1689. [Google Scholar]
  • Basso P. 2018. Characterization and N flow analysis of farming systems in the Andes valleys of North Patagonia. Degree Thesis, Wageningen University & Research (The Netherlands), 51 p. [Google Scholar]
  • Blackhall M, Raffaele E, Paritsis J, Tiribelli F, Morales JM, Kitzberger T, et al. 2017. Effects of biological legacies and herbivory on fuels and flammability traits: A long-term experimental study of alternative stable states. Journal of Ecology 105: 1309–1322. [Google Scholar]
  • Bran D, Gaitán J, Velasco V, Easdale M. 2011. An approach to assess desertification in North Patagonia. Rosario (Argentina): International Rangeland Congress, pp. 741–745. [Google Scholar]
  • Buono GV, Massara Paletto L, Celdrán D. 2011. Forage availability dynamics of a Patagonian steppe under different grazing use intensities by sheep. Revista Argentina de Producción Animal 31: 135–143. [Google Scholar]
  • Byrnes RC, Eastburn DJ, Tate KW, Roche LM. 2018. A global meta-analysis of grazing impacts on soil health indicators. Journal of Environmental Quality 47(4): 758–765. [Google Scholar]
  • Cardoso BM, Chaia EE, Raffaele E. 2010. Are Northwestern Patagonian “mallín” wetland meadows reservoirs of Ochetophila trinervis infective Frankia? Symbiosis 52: 11–19. [Google Scholar]
  • Castillo L, Ladio A. 2017. Mammals and birds as ethno-indicators of change: Their importance to livestock farmers in Arid Patagonia (Argentina). Environment, Development and Sustainability 20: 2161–2179. [Google Scholar]
  • Ceballos R. 1982. El sitio Cuyín Manzano. Estudios y Documentos. Centro de Investigaciones Científicas de Río Negro 9: 1–66. [Google Scholar]
  • Chartier MP, Rostagno CM, Videla LS. 2013. Selective erosion of clay, organic carbon and total nitrogen in grazed semiarid rangelands of northeastern Patagonia, Argentina. Journal of Arid Environments 88: 43–49. [Google Scholar]
  • Chillo V, Amoroso MM, Rezzano CA. 2018. La intensidad en el uso silvopastoril modifica la provisión de servicios ecosistémicos a través de cambios en la diversidad en bosques del noroeste de la Patagonia Argentina. Ecosistemas 27(3): 75–86. [Google Scholar]
  • Chimner RA, Bonvissuto GL, Cremona M, Gaitán JJ, López CR. 2011. Ecohydrological conditions of wetlands along a precipitation gradient in Patagonia, Argentina. Ecología Austral 21: 329–337. [Google Scholar]
  • Cibils A, Fernández R, Oliva G, Escobar J. 2014. Is holistic management really saving patagonian rangelands from degradation? A response to teague. Rangelands 36: 26–27. [Google Scholar]
  • Cipriotti PA, Aguiar MR, Wiegand T, Paruelo JM. 2019. Combined effects of grazing management and climate on semi-arid steppes: Hysteresis dynamics prevent recovery of degraded rangelands. Journal of Applied Ecology 56: 2155–2165. [Google Scholar]
  • Coronato F, Fasioli E, Schweitzer A, Tourrand JF. 2015. Rethinking the role of sheep in the local development of Patagonia, Argentina. Revue d’Élevage et de Médecine Vétérinaire des Pays Tropicaux 68(2-3): 129–133. [Google Scholar]
  • De Paz M, Raffaele E. 2013. Cattle change plant reproductive phenology, promoting community changes in a post-fire Nothofagus forest in Northern Patagonia, Argentina. Journal of Plant Ecology 6: 459–467. [Google Scholar]
  • Dong S. 2016. Overview: Pastoralism in the World. In: Dong S, Kassam KAS, Tourrand JF, Boone RB, eds. Building resilience of human-natural systems of pastoralism in the developing World. Cham, Switzerland: Springer, pp. 1–37. [Google Scholar]
  • Dudinszky N, Cabello MN, Grimoldi AA, Schalamuk S, Golluscio RA. 2019. Role of grazing intensity on shaping arbuscular mycorrhizal fungi communities in patagonian semiarid steppes. Rangeland Ecology & Management 72(4): 692–699. [Google Scholar]
  • Easdale MH, Aguiar MR. 2018. From traditional knowledge to novel adaptations of transhumant pastoralists the in face of new challenges in North Patagonia. Journal of Rural Studies 63: 65–73. [Google Scholar]
  • Easdale MH, Bruzzone O, Mapfumo P, Tittonell P. 2018. Phases or regimes? Revisiting NDVI trends as proxies for land degradation. Land Degradation and Development 29: 433–445. [Google Scholar]
  • Easdale MH, Fariña C, Hara S, Pérez León N, Umaña F, Tittonell P, et al. 2019. Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoring. Ecological Indicators 107: 105545. [Google Scholar]
  • El Mujtar V, Muñoz N, Prack McCormick B, Pulleman M, Tittonell P. 2019. Role and management of soil biodiversity for food security and nutrition; where do we stand? Global Food Security 20: 132–144. [Google Scholar]
  • Enriquez AS, Cremona MV. 2018. Testing particulate organic carbon in Patagonian wet and mesic meadows and it use as a sensitive indicator of soil degradation due to overgrazing. Wetlands Ecology and Management 26: 345–357. [Google Scholar]
  • Enriquez AS, Chimner R, Cremona MV. 2014. Long-term grazing negatively affects nitrogen dynamics in Northern Patagonian wet meadows. Journal of Arid Environment 109: 1–5. [Google Scholar]
  • Enriquez AS, Chimner R, Diehl P, Cremona MV, Bonvissuto GL. 2015. Grazing intensity levels influence C reservoirs of wet and mesic meadows along a precipitation gradient in Northern Patagonia. Wetland Ecology and Management 23: 439–451. [Google Scholar]
  • Enriquez AS, Vangeli S, Posse G. 2020. Dinámica de las emisiones de N2O, CH4 y CO2 en mallines de Patagonia Norte. In: XXVII Congreso Argentino de las Ciencias del Suelo, Corrientes, Argentina. [Google Scholar]
  • FAO. 2018. World Livestock: Transforming the livestock sector through the Sustainable Development Goals. Rome: Food and Agriculture Organization of the United Nations (FAO), 222 p. [Google Scholar]
  • FAO, ITPS. 2018. Global Soil Organic Map (GSOCmap). Technical Report. Rome (Italy), 162 p. [Google Scholar]
  • Fariña CM. 2018. Pastoreo intensivo en distintas estaciones del año: efectos a escala de planta y de comunidad en una estepa de Patagonia Norte. Master Thesis, Universidad Nacional de Buenos Aires (Argentina), 107 p. [Google Scholar]
  • Gaitán JJ. 2002. Topografía, pastoreo y vegetación como factores de control de la concentración y patrón espacial del carbono edáfico en la estepa Patagónica. Master Thesis. Universidad de Buenos Aires, 130 p. [Google Scholar]
  • Gaitán JJ, Bran D, Oliva G, Aguiar M, Buono G, Ferrante D, et al. 2017. Aridity and overgrazing have convergent effects on ecosystem structure and functioning in Patagonian rangelands. Land Degradation and Development 29(2): 210–218. [Google Scholar]
  • Gaitán JJ, Maestre FT, Bran DE, Buono GG, Dougill AJ, Martinez GG, et al. 2019. Biotic and abiotic drivers of topsoil organic carbon concentration in drylands have similar effects at regional and global scales. Ecosystems 22(7): 1445–1456. [Google Scholar]
  • Gasteyer SP, Flora CB. 2000. Modernizing the savage: Colonization and perceptions of landscape and lifescape. Sociologia Ruralis 40: 128–149. [Google Scholar]
  • Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, et al. 2013. Tackling climate change through livestock-A global assessment of emissions and mitigation opportunities. Rome (Italy): Food and Agriculture Organization of the United Nations (FAO), 139 p. [Google Scholar]
  • Golluscio RA, Austin AT, García Martínez GC, Gonzalez-Polo M, Sala OE, Jackson RB. 2009. Sheep Grazing Decreases Organic Carbon and Nitrogen Pools in the Patagonian Steppe: Combination of Direct and Indirect Effects. Ecosystems 12: 686–697. [Google Scholar]
  • Gowda JH, Kitzberger T, Premoli AC. 2012. Landscape responses to a century of land use along the northern Patagonian forest-steppe transition. Plant Ecology 213: 259–272. [Google Scholar]
  • Jaramillo M. 2019. Características funcionales de mallines patagónicos: adaptaciones de la vegetación a la toma preferencial de formas de nitrógeno inorgánico (amonio y nitrato). PhD Thesis, Universidad Nacional Comahue, 65 p. [Google Scholar]
  • Kröpfl AI, Cecchi GA, Villasuso NM, Distel RA. 2013. Degradation and recovery processes in semi-arid patchy rangelands of Northern Patagonia, Argentina. Land Degradation and Development 24(4): 393–399. [Google Scholar]
  • Kröpfl AI, Deregibus VA, Cecchi GA. 2015. Un modelo de estados y transiciones para el Monte oriental rionegrino. Phyton 84: 390–396. [Google Scholar]
  • Laclau P. 2006. Fijación de carbono en ecosistemas boscosos y herbáceos del norte de la Patagonia. PhD Thesis, Universidad Nacional del Comahue, 369 p. [Google Scholar]
  • Ladio AH, Lozada M. 2009. Human ecology, ethnobotany and traditional practices in rural populations inhabiting the Monte region: Resilience and ecological knowledge. Journal of Arid Environments 73(2): 222–227. [Google Scholar]
  • Lanari MR, Reising C, Monzón M, Subiabre M, Killmeate R, Basualdo A, et al. 2012. Recuperación de la oveja linca en la Patagonia Argentina. Actas Iberoamericanas de Conservación Animal 2: 151–154. [Google Scholar]
  • Larreguy C, Carrera AL, Bertiller MB. 2014. Effects of long-term grazing disturbance on the below ground storage of organic carbon in the Patagonian Monte, Argentina. Journal of Environmental Management 134: 47–55. [Google Scholar]
  • Larreguy C, Carrera AL, Bertiller MB. 2017. Reductions of plant cover induced by sheep grazing change the above-below-ground partition and chemistry of organic C stocks in arid rangelands of Patagonian Monte, Argentina. Journal of Environmental Management 199: 139–147. [Google Scholar]
  • Lebacq T, Baret PV, Stilmant D. 2013. Sustainability indicators for livestock farming. A review. Agronomy for Sustainable Development 33: 311–327. [Google Scholar]
  • López DR, Brizuela MA, Willems P, Aguiar MR, Siffredi G, Bran D. 2013. Linking ecosystem resistance, resilience, and stability in steppes of North Patagonia. Ecological Indicators 24: 1–11. [Google Scholar]
  • Marcos MS, Bertiller MB, Olivera NL. 2019. Microbial community composition and network analyses in arid soils of the Patagonian Monte under grazing disturbance reveal an important response of the community to soil particle size. Applied Soil Ecology 138: 223–232. [Google Scholar]
  • Marcos MS, Olivera NL. 2016. Microbiological and biochemical indicators for assessing soil quality in drylands from Patagonia. In: Olivera NL, Libkind D, Donati E, eds. Biology and Biotechnology of Patagonian Microorganisms. Gewerbestrasse (Switzerland): Springer, pp. 91–108. [Google Scholar]
  • Marino A, Rodríguez V, Schroeder NM. 2020. Wild guanacos as scapegoat for continued overgrazing by livestock across southern Patagonia. Journal of Applied Ecology 57(12): 2393–2395. [Google Scholar]
  • Marsoner T, Egarter Vigl L, Manck F, Jaritz G, Tappeiner U, Tasser E. 2018. Indigenous livestock breeds as indicators for cultural ecosystem services: A spatial analysis within the Alpine Space. Ecological Indicators 94(2): 55–63. [Google Scholar]
  • MAyDS. 2020. Segunda Contribución Determinada a Nivel Nacional de la República Argentina. República Argentina: Ministerio de Ambiente y Desarrollo Sostenible. [Google Scholar]
  • Mazzarino MJ, Bertiller MB, Sain C, Satti P, Coronato F. 1998. Soil nitrogen dynamics in northeastern Patagonia steppe under different precipitation regimes. Plant and Soil 202(1): 125–131. [Google Scholar]
  • Mazzini F, Relva MA, Malizia LR. 2018. Impacts of domestic cattle on forest and woody ecosystems in southern South America. Plant Ecology 219(8): 913–925. [Google Scholar]
  • Mazzonia E, Vazquez M. 2009. Desertification in Patagonia. In: Latrubesse EM, ed. Developments in Earth Surface Processes. Amsterdam (The Netherlands): Elsevier, pp. 351–377. [Google Scholar]
  • Milchunas DG, Mosier AR, Morgan JA, LeCain DR, King JY, Nelson JA. 2005. Root production and tissue quality in a shortgrass steppe exposed to elevated C O2: Using a new ingrowth method. Plant and Soil 268(1): 111–122. [Google Scholar]
  • Modernel P, Dogliotti S, Alvarez S, Corbeels M, Picasso V, Tittonell P, et al. 2018. Identification of beef production farms in the Pampas and Campos area that stand out in economic and environmental performance. Ecological Indicators 89: 755–770. [Google Scholar]
  • Neary DG, Leonard JM. 2020. Effects of fire on grassland soils and water: A review. In: Kindomihou VM, ed. Grasses and grassland aspects. London (UK): IntechOpen, pp. 1–22. [Google Scholar]
  • Nosetto MD, Jobbágy E, Paruelo JM. 2006. Carbon sequestration in semi-arid rangelands: Comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia. Journal of Arid Environments 67: 142–156. [Google Scholar]
  • Nuñez PG, Michel CL, Conti S. 2020. Development challenges in the province of Río Negro, Argentina. Problemas del desarrollo 51(203): 167–190. [Google Scholar]
  • Oliva G, Ferrante D, Puig S, Williams M. 2012. Sustainable sheep management using continuous grazing and variable stocking rates in Patagonia: A case study. The Rangeland Journal 34: 285–295. [Google Scholar]
  • Oliva G, Paredes P, Ferrante D, Cepeda C, Rabinovich J. 2020. Remotely sensed primary productivity shows that domestic and native herbivores combined are overgrazing Patagonia. Journal of Applied Ecology 56(7): 1575–1584. [Google Scholar]
  • Olivera NL, Prieto L, Carrera AL, Saraví Cisneros H, Bertiller MB. 2014. Do soil enzymes respond to long-term grazing in an arid ecosystem? Plant Soil 378: 35–48. [Google Scholar]
  • Olivera NL, Prieto L, Bertiller MB, Ferrero MA. 2016. Sheep grazing and soil bacterial diversity in shrublands of the Patagonian Monte, Argentina. Journal of Arid Environments 125: 16–20. [Google Scholar]
  • Oñatibia GR. 2021. Grazing management and provision of ecosystem services in patagonian arid rangelands. In: Peri PL, Martínez Pastur G, Nahuelhual L, eds. Ecosystem services in Patagonia. Natural and social sciences of Patagonia. Cham (Switzerland): Springer, pp. 47–74. [Google Scholar]
  • Oñatibia GR, Aguiar MR. 2018. Paddock size mediates the heterogeneity of grazing impacts on vegetation. Rangeland Ecology & Management 71(4): 470–480. [Google Scholar]
  • Oñatibia GR, Aguiar MR. 2019. Grasses and grazers in arid rangelands: Impact of sheep management on forage and non-forage grass populations. Journal of Environmental Management 235: 42–50. [Google Scholar]
  • Oñatibia GR, Aguiar MR, Semmartin M. 2015. Are there any trade-offs between forage provision and the ecosystem service of C and N storage in arid rangelands? Ecological Engineering 77: 26–32. [Google Scholar]
  • Oñatibia GR, Reyes MF, Aguiar MR. 2017. Fine-scale root community structure and below-ground responses to grazing show independence from above-ground patterns. Journal of Vegetation Science 28: 1097–1106. [Google Scholar]
  • Oñatibia GR, Boyero L, Aguiar MR. 2018. Regional productivity mediates the effects of grazing disturbance on plant cover and patch-size distribution in arid and semi-arid communities. Oikos 127: 1205–1215. [Google Scholar]
  • Opio C, Gerber P, Mottet A, Falculli A, Tempio G, MacLeod M, et al. 2013. Greenhouse gas emissions from ruminant supply chains – A global life cycle assessment. Rome (Italy): Food and Agriculture Organization of the United Nations (FAO), 214 p. [Google Scholar]
  • Oteros-Rozas E, Ontillera-Sánchez R, Sanosa P, Gómez-Baggethun E, Reyes-García V, González JA. 2013. Traditional ecological knowledge among transhumant pastoralists in Mediterranean Spain. Ecology and Society 18(3): 33. [Google Scholar]
  • Paul BK, Groot JCJ, Birnholz CA, Nzogela B, Notenbaert A, Woyessa K, et al. 2020. Reducing agro-environmental trade-offs through sustainable livestock intensification across smallholder systems in Northern Tanzania. International Journal of Agricultural Sustainability 18(1): 35–54. [Google Scholar]
  • Pérez León N, Bruzzone O, Easdale MH. 2020. A framework to tackling the synchrony between social and ecological phases of the annual cyclic movement of transhumant pastoralism. Sustainability 12(8): 3462. [Google Scholar]
  • Peri PL, Bahamonde HA, Lencinas MV, Gargaglione V, Soler R, Ormaechea S, et al. 2016. A review of silvopastoral systems in native forests of Nothofagus antarctica in southern Patagonia, Argentina. Agroforestry Systems 90(6): 933–960. [Google Scholar]
  • Peri PL, Rosas YM, Ladd B, Díaz-delgado R, Pastur GM. 2020. Carbon Footprint of Lamb and Wool Production at Farm Gate and the Regional Scale in Southern Patagonia. Sustainability 12: 3077. [Google Scholar]
  • Prieto LH, Bertiller MB, Carrera AL, Olivera NL. 2011. Soil enzyme and microbial activities in a grazing ecosystem of Patagonian Monte, Argentina. Geoderma 162(3-4): 281–287. [Google Scholar]
  • Raffaele E, Veblen TT, Blackhall M, Tercero-Bucardo N. 2011. Synergistic influences of introduced herbivores and fire on vegetation change in northern Patagonia, Argentina. Journal of Vegetation Science 22: 59–71. [Google Scholar]
  • Randolph TF, Schelling E, Grace D, Nicholson CF, Leroy JL, Cole DC, et al. 2007. Invited review: Role of livestock in human nutrition and health for poverty reduction in developing countries. Journal of Animal Science 85(11): 2788–2800. [Google Scholar]
  • Rusch V, Cavallero L, López DR. 2016. El modelo de estados y transiciones como herramienta para la aplicación de la Ley 26331. Patagonia Forestal 1: 20–27. [Google Scholar]
  • Solano-Hernandez A, Bruzzone O, Groot J, Laborda L, Martínez A, Tittonell P, et al. 2020. Convergence between satellite information and farmers’ perception of drought in rangelands of North-West Patagonia, Argentina. Land Use Policy 97: 104726. [Google Scholar]
  • Tittonell P., 2014. Livelihood strategies, resilience and transformability in African agroecosystems. Agricultural Systems 126: 3–14. [Google Scholar]
  • Toledo S, Gargaglione V, Montecchia M, Fontenla S, Correa O, Peri PL. 2017. Efecto de la carga ganadera sobre la biomasa microbiana del suelo en la Estepa Magallánica Seca de Santa Cruz. Corrientes (Argentina): Agrotecnia 25. REBIOS 2017. In: XI Reunión Nacional Científico-Técnica de Biología de Suelos, 53 p. [Google Scholar]
  • Toro-Mujica P, Aguilar C, Vera RR, Bas F. 2017. Carbon footprint of sheep production systems in semi-arid zone of Chile: A simulation-based approach of productive scenarios and precipitation patterns. Agricultural Systems 157: 22–38. [Google Scholar]
  • Villagra ES, Easdale MH, Giraudo CG, Bonvissuto GL. 2015. Productive and income contributions of sheep, goat, and cattle, and different diversification schemes in smallholder production systems of Northern Patagonia, Argentina. Tropical Animal Health and Production 47(7): 1373–1380. [Google Scholar]
  • Villagra ES, Pelliza A, Willems P, Siffredi G. 2013. What does domestic livestock eat in Northern Patagonian rangelands? Animal Production Science 53(4): 360–367. [Google Scholar]
  • Von Thungen J. 2010. Profitability of sheep farming and wildlife management in Patagonia. Pastoralism 1: 274. [Google Scholar]
  • Von Thungen J, Martin E, Lanari MR, 2021. Controversies and common ground in wild and domestic fine fiber production in Argentina. Frontiers in Sustainable Food Systems 5: 24. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.