Issue
Cah. Agric.
Volume 30, 2021
Oil palm in Mexico and in the Americas / Le palmier à huile au Mexique et en Amérique latine Coordonnateurs : Laurène Feintrenie, Cesar J. Vázquez Navarrete, Luz del Carmen Lagunes Espinoza
Article Number 41
Number of page(s) 10
DOI https://doi.org/10.1051/cagri/2021026
Published online 27 October 2021
  • Allen R, Smith M, Perrier A, Pereira LS. 1994. An update for the definition of reference evapotranspiration. ICID Bulletin 43: 1–34. [Google Scholar]
  • Bleiholder H, Van Den Boom T, Langelüddecke P, Stauss R. 1991. Codificación uniforme para los estadios fenológicos de las plantas cultivadas y de las malas hierbas. Phytoma 28: 54–56. [Google Scholar]
  • Breure CJ. 2010. Rate of leaf expansion: A criterion for identifying oil palm (Elaeis guineensis Jacq.) types suitable for planting at high densities. NJAS – Wageningen Journal of Life Sciences 57: 141–147. https://doi.org/10.1016/j.njas.2010.03.001. [Google Scholar]
  • Carr MKV. 2011. The water relations and irrigation requirements of oil palm (Elaeis guineensis): A review. Experimental Agriculture 47(4): 629–652. https://doi.org/10.1017/S0014479711000494. [Google Scholar]
  • Combres JC, Pallas B, Rouan L, Mialet-Serra I, Caliman JP, Braconnier S, et al. 2013. Simulation of inflorescence dynamics in oil palm and estimation of environment-sensitive phenological phases: a model based analysis. Functional Plant Biology 40: 263–279. https://doi.org/10.1071/FP12133. [Google Scholar]
  • Corley RHV, Tinker PBH. 2015. The oil palm. 5th ed. World Agriculture Series. Oxford (UK): Wiley Blackwell, 639 p. https://doi.org/10.1002/9781118953297. [Google Scholar]
  • Cornaire B, Daniel C, Lamade E, Fodil Z. 1994. Comportamiento de la palma de aceite bajo estrés hidrico. Palmas 15: 61–70. [Google Scholar]
  • Dufrene E, Saugier B. 1993. Gas exchange of oil palm in relation to light, vapor pressure deficit, temperature and leaf age. Functional Ecology 7(1): 97–104. https://doi.org/10.2307/2389872. [Google Scholar]
  • Dufrene E, Dubos B, Rey H, Quencez P, Saugier B. 1992. Changes in evapotranspiration from an oil palm stand (Elaeis guineensis Jacq.) exposed to seasonal soil water deficits. Acta Oecologica 13: 299–314. [Google Scholar]
  • Fan Y, Roupsard O, Bernoux M, Le Maire G, Panferov O, Kotowska MM, et al. 2015. A sub-canopy structure for simulating oil palm in the Community Land Model (CLM-Palm): phenology, allocation and yield. Geoscientific Model Development 8: 3785–3800. https://doi.org/10.5194/gmd-8-3785-2015. [Google Scholar]
  • FAOSTAT. 2020. Datos sobre alimentación y agricutura. http://www.fao.org/faostat/es/#data/QC/visualize (Consultado el 13 de marzo de 2020). [Google Scholar]
  • Forero DC, Hormaza P, Romero HM. 2012. Phenological growth stages of African oil palm (Elaeis guineensis). Annals of Applied Biology 160: 56–65. https://doi.org/10.1111/j.1744-7348.2011.00520.x. [Google Scholar]
  • Granier A. 1985. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Annals of Forest Science 42: 193–200. https://doi.org/10.1051/forest:19850204. [Google Scholar]
  • Hardanto A, Röll A, Niu F, Meijide A, Hendrayanto, Hölscher D. 2017. Oil palm and rubber tree water use patterns: Effects of topography and flooding. Frontiers in Plant Science 8: 452. https://doi.org/10.3389/fpls.2017.00452. [Google Scholar]
  • Henson IE, Mohd RMDN, Mohd HH, Zuraidah Y, Siti NAM. 2005. Stress development and its detection in young oil palms in North Kedah, Malaysia. Journal of Oil Palm Research 17: 11–26. [Google Scholar]
  • Hernández-Rojas DA, López-Barrera F, Bonilla-Moheno M. 2018. Preliminary analysis of the land use dynamic with oil palm (Elaeis guineensis) plantations in Mexico. Agrociencia 52: 875–893. [Google Scholar]
  • Hoffman MP, Castaneda VA, van Wijk MT, Giller KE, Oberthür T, Donough C, et al. 2014. Simulating potential growth and yield of oil palm (Elaeis guineensis) with PALMSIM: Model description, evaluation and application. Agricultural Systems 131: 1–10. https://doi.org/10.1016/j.agsy.2014.07.006. [Google Scholar]
  • INIFAP. 2011. Paquete Tecnológico Palma de Aceite (Elaeis guineensis Jack.). Establecimiento y mantenimiento. In: Programa Estratégico para el Desarrollo Rural Sustentable de la Región Sur-Sureste de México: Trópico Húmedo 2011, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Campo Experimental Rosario Izapa, Tuxtla Chico, Chiapas, 23 p. [Google Scholar]
  • Kallarackal J, Jeyakumar P, George SJ. 2004. Water use of irrigated oil palm at three different arid locations in peninsular India. Journal of Oil Palm Research 16(1): 45–53. [Google Scholar]
  • Legros S, Mialet-Serra I, Caliman JP, Siregar FA, Clement-Vidal A, Fabre D, et al. 2009. Phenology, growth and physiological adjustments of oil palm (Elaeis guineensis) to sink limitation induced by fruit pruning. Annals of Botany 104: 1183–1194. https://doi.org/10.1093/aob/mcp216. [Google Scholar]
  • Meier U. 1997. Growth stages of mono-and dicotyledonous plants. Berlin (Allemagne): Blackwell Wissenschafts-Verlag. https://doi.org/10.5073/20180906-074619. [Google Scholar]
  • Niu F, Röll A, Hardanto A, Meijide A, Kohler M, Hendrayanto, et al. 2015. Oil palm water use: calibration of a sap flux method and a field measurement scheme. Technical Note. Tree Physiology 35(5): 563–573. https://doi.org/10.1093/treephys/tpv013. [Google Scholar]
  • Ochs R, Daniel C. 1976. Research on techniques adapted to dry regions. In: Corley RHV, Hardon JJ, Wood BJ, eds. Oil palm research. Amsterdam (The Netherlands): Elsevier, pp. 315–330. [Google Scholar]
  • Palma-López DJ, Triano A. 2002. Plan de uso sustentable de los suelos de Tabasco, Vol. II. Colegio de Postgraduados-ISPROTAB, ISBN: 9688393622. [Google Scholar]
  • Palma-López DJ, Palma-Cancino DJ, Jiménez-Jiménez R, Obrador-Olán J. 2017. Quality of the irrigation water in two zones of Tabasco, Mexico, with potential to cultivate oil palm (Elaeis guineensis Jacq). Agroproductividad 10(12): 64–70. [Google Scholar]
  • Rivera Méndez YD, Moreno Chacón L, Bayona JC, Romero MH. 2012. Physiological response of oil palm interspecific hybrids (Elaeis oleifera H.B.K. Cortes versus Elaeis guineensis Jacq.) to water deficit. Brazililian Society of Plant Physiology 24(4): 273–280. https://doi.org/10.5194/bg-12-5619-2015. [Google Scholar]
  • Röll A, Niu F, Meijide A, Hardanto A, Hendrayanto, Knohl A, et al. 2015. Transpiration in an oil palm landscape: Effects of palm age. Biogeosciences 12: 5619–5633. https://doi.org/10.5194/bg-12-5619-2015. [Google Scholar]
  • Salgado-García S, Palma-López DJ, Zavala-Cruz J, Lagunes-Espinoza LC, Córdova-Sánchez S, Castelán-Estrada M, et al. 2017. Recomendaciones de fertilizantes en palma de aceite en la Región de los Ríos de Tabasco. H. Cárdenas, Tabasco, México: Grupo SIRDF-PA, Colegio de Postgraduados, Campus Tabasco, 69 p. ISBN: 9786077153436. [Google Scholar]
  • SAS University. 2018. Statistical software for academic, non commercial use. Cary NC, USA. [Google Scholar]
  • SIAP. 2017. Servicio de Información Agrialimentaria y Pesquera. Estadísticas de producción agrícola 2017. infosiap.siap.gob.mx/gobmx/datosAbiertos_a.php (Consultado el 25 septiembre de 2017). [Google Scholar]
  • Suharyanti NA, Mizuno K, Sodr A. 2020. The effect of water deficit on inflorescence period at palm oil productivity on peatland. In: E3S Web of Conferences 211, 05005. The 1st JESSD Symposium 2020. https://doi.org/10.1051/e3sconf/202021105005. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.