Numéro
Cah. Agric.
Volume 26, Numéro 3, Mai-Juin 2017
Les agricultures face au changement climatique. Coordonnateur : Emmanuel Torquebiau
Numéro d'article 34002
Nombre de pages 12
DOI https://doi.org/10.1051/cagri/2017028
Publié en ligne 30 juin 2017
  • Abildtrup J, Audsley E, Fekete-Farkas M, Giupponi C, Gylling M, Rosato P, et al. 2006. Socio-economic scenario development for the assessment of climate change impacts on agricultural land use: a pairwise comparison approach. Environmental Science & Policy 9: 101–115. [Google Scholar]
  • Aboudrare A, Debaeke P, Bouaziz A, Chekli H. 2006. Effects of soil tillage and fallow management on soil water storage and sunflower production in a semiarid Mediterranean climate. Agricultural Water Management 83: 183–196. [Google Scholar]
  • Aertsens J, De Nocker L, Gobin A. 2013. Valuing the carbon sequestration potential for European agriculture. Land Use Policy 31: 584–594. [Google Scholar]
  • Angers DA, Eriksen-Hamel NS. 2008. Full-inversion tillage and organic carbon distribution in soil profiles: a meta-analysis. Soil Science Society of America Journal 72: 1370–1374. [CrossRef] [Google Scholar]
  • Anwar MR, Liu DE, Macadam I, Kelly G. 2013. Adapting agriculture to climate change: a review. Theoretical and Applied Climatology 113: 225–245. [Google Scholar]
  • Arrouays D, Balesdent J, Germon JC, Jayet PA, Soussana JF, Stengel P (Eds.). 2002. Contribution à la lutte contre l'effet de serre. Stocker du carbone dans les sols agricoles de France ? Expertise scientifique collective. Synthèse du rapport, Inra (France), 32 p. [Google Scholar]
  • Asseng S, Pannell DJ. 2013. Adapting dryland agriculture to climate change: farming implications and research and development needs in Western Australia. Climatic Change 118: 167–181. [Google Scholar]
  • Autret B, Mary B, Chenu C, Balabane M, Girardin C, Bertrand M, et al. 2016. Alternative arable cropping systems: A key to increase soil organic carbon storage? Results from a 16 year field experiment. Agriculture, Ecosystems & Environment 232: 150–164. [Google Scholar]
  • Bindi M, Olesen JE. 2011. The responses of agriculture in Europe to climate change. Regional Environmental Change 11 (Suppl. 1): S151– S158. [Google Scholar]
  • Boiffin J, Benoit M, Le Bail M, Papy F, Stengel P. 2014. Agronomie, espace, territoire : travailler « pour et sur » le développement territorial, un enjeu pour l'agronomie. Cahiers Agricultures 23: 72–83. DOI: 10.1684/agr.2014.0688. [Google Scholar]
  • Boote KJ, Ibrahim AMH, Lafitte R, McCulley R, Messina C, Murray SC, et al. 2011. Position statement on crop adaptation to climate change. Crop Science 51: 2337–2343. [Google Scholar]
  • Bradshaw B, Dolan H, Smit B. 2004. Farm-level adaptation to climatic variability and change: crop diversification in the Canadian Prairies. Climatic Change 67: 119–141. [Google Scholar]
  • Brisson N, Levrault F (Eds). 2010. Climate change, agriculture and forests in France: simulations of the impacts on the main species. The Green Book of the CLIMATOR Project (2007–2010). Paris (France): Ademe. [Google Scholar]
  • Brisson N, Gate P, Gouache D, Charmet G, Oury FX, Huard F. 2010. Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Research 119: 201–212. [Google Scholar]
  • Brouder SM, Gomez-Macpherson H. 2014. The impact of conservation agriculture on smallholder agricultural yields: A scoping review of the evidence. Agriculture, Ecosystems & Environment 187: 11–32. [Google Scholar]
  • Ceccarelli S, Grando S, Maatougui M, Michael M, Slash M, Haghparast R, et al. 2010. Plant breeding and climate changes. The Journal of Agricultural Science 148: 627–637. [Google Scholar]
  • Challinor A, Wheeler T, Garforth C, Craufurd P, Kassam A. 2007. Assessing the vulnerability of food crop systems in Africa to climate change. Climatic Change 83: 381–399. [Google Scholar]
  • Chataway RG, Cooper JE, Orr WN, Cowan RT. 2011. The role of tillage, fertiliser and forage species in sustaining dairying based on crops in southern Queensland 2. Double-crop and summer sole-crop systems. Animal Production Science 51: 904–919. [CrossRef] [Google Scholar]
  • Chen C, Qian C, Deng A, Zhang W. 2012. Progressive and active adaptations of cropping system to climate change in Northeast China. European Journal of Agronomy 38: 94–103. [CrossRef] [Google Scholar]
  • Chun JA, Shim KM, Min SH, Wang Q. 2016. Methane mitigation for flooded rice paddy systems in South Korea using a process-based model. Paddy and Water Environment 14: 123–129. [CrossRef] [Google Scholar]
  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, et al. 2013. Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, et al. (eds). Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York. NY, USA: Cambridge University Press. [Google Scholar]
  • Craheix D, Angevin F, Doré T, de Tourdonnet S. 2016. Using a multicriteria assessment model to evaluate the sustainability of conservation agriculture at the cropping system level in France. European Journal of Agronomy 76: 75–86. [Google Scholar]
  • Cutforth HW, McGinn SM, McPhee KE, Miller PR. 2007. Adaptation of pulse crops to the changing climate of the Northern Great Plains. Agronomy Journal 99: 1684–169. [Google Scholar]
  • Daryanto S, Wang L, Jacinthe PA. 2015. Global synthesis of drought effects on food legume production. PloS ONE 10(6): e0127401. [PubMed] [Google Scholar]
  • Debaeke P. 2004. Scenario analysis for cereal management in water-limited conditions by the means of a crop simulation model (STICS). Agronomie 24: 315–326. [CrossRef] [EDP Sciences] [Google Scholar]
  • Debaeke P, Aboudrare A. 2004. Adaptation of crop management to water-limited environments. European Journal of Agronomy 21: 433–446. [CrossRef] [Google Scholar]
  • Debaeke P, Bergez JE, Leenhardt D. 2008. Perspectives agronomiques et génétiques pour limiter ou réguler la demande en eau d'irrigation. La Houille Blanche 6: 17–25. [CrossRef] [EDP Sciences] [Google Scholar]
  • Debaeke P, Casadebaig P, Flénet F, Langlade N. 2017. Sunflower crop and climate change: vulnerability, adaptation, and mitigation potential from case-studies in Europe. OCL − Oilseeds and fats, Crops and Lipids 24(1): D102. [Google Scholar]
  • Dimassi B, Cohan JP, Labreuche J, Mary B. 2013. Changes in soil carbon and nitrogen following tillage conversion in a long-term experiment in Northern France. Agriculture, Ecosystems & Environment 169: 12–20. [Google Scholar]
  • Dimassi B, Mary B, Wylleman R, Labreuche J, Couture D, Piraux F, et al. 2014. Long-term effect of contrasted tillage and crop management on soil carbon dynamics during 41 years. Agriculture, Ecosystems & Environment 188: 134–146. [Google Scholar]
  • Ding DY, Feng H, Zhao Y, He JQ, Zou YF, Jin JM. 2016. Modifying winter wheat sowing date as an adaptation to climate change on the Loess Plateau. Agronomy Journal 108: 53–63. [Google Scholar]
  • Doll, P. 2002. Impact of climate change and variability on irrigation requirements: a global perspective. Climatic Change 54: 269–293. [Google Scholar]
  • Donatelli M, Duveiller G, Fumagalli D, Srivastava A, Zucchini A, Angileri V, et al. 2012. Assessing agriculture vulnerabilities for the design of effective measures for adaption to climate change (AVEMAC project). European Union, Joint Research Centre. DOI: 102788/16181. [Google Scholar]
  • Falloon P, Betts R. (2010). Climate impacts on European agriculture and water management in the context of adaptation and mitigation– the importance of an integrated approach. Science of the Total Environment 408: 5667–5687. [CrossRef] [PubMed] [Google Scholar]
  • Food and Agriculture Organization of the United Nations (FAO). 2013. Climate-Smart Agriculture Sourcebook Rome, Italy. [Google Scholar]
  • Fumoto T, Yanagihara T, Saito T, Yagi K. 2010. Assessment of the methane mitigation potentials of alternative water regimes in rice fields using a process-based biogeochemistry model. Global Change Biology 16: 1847–1859. [Google Scholar]
  • Gabrielle B, Bamiere L, Caldes N, De Cara S, Decocq G, Ferchaud F, et al. 2014. Paving the way for sustainable bioenergy in Europe: technological options and research avenues for large-scale biomass feedstock supply. Renewable & Sustainable Energy Reviews 33: 11–25. [CrossRef] [Google Scholar]
  • Gianquinto G, Orsini F, Sambo P, D'Urzo MP. 2011. The use of diagnostic optical tools to assess nitrogen status and to guide fertilization of vegetables. Horttechnology 21: 287–292. [Google Scholar]
  • Giller KE, Andersson JA, Corbeels M, Kirkegaard J, Mortensen D, Erenstein O, et al. 2015. Beyond conservation agriculture. Frontiers in Plant Science 6: 870. [Google Scholar]
  • Graß R, Thies B, Kersebaum KC, Wachendorf M. 2015. Simulating dry matter yield of two cropping systems with the simulation model HERMES to evaluate impact of future climate change. European Journal of Agronomy 70: 1–10. [CrossRef] [Google Scholar]
  • Gregory PJ, Johnson SN, Newton AC, Ingram JSI. 2009. Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany 60: 2827–2838. [CrossRef] [PubMed] [Google Scholar]
  • Houmanat K, El Fechtali M, Mazouz H, Nabloussi A. 2016. Assessment of sunflower germplasm selected under autumn planting conditions. In: Proceedings of the 19th International Sunflower Conference. Turkey: Edirne, pp. 286–293. [Google Scholar]
  • Howden SM, Soussana JF, Tubiello FN, Chhetri N, Dunlop M, Meinke H. 2007. Adapting agriculture to climate change. In: Proceedings of the National Academy of Sciences of the United States of America 104(50): 19691–19696. [CrossRef] [PubMed] [Google Scholar]
  • Iglesias A, Quiroga S, Moneo M, Garrote L. 2012. From climate change impacts to the development of adaptation strategies: challenges for agriculture in Europe. Climatic Change 112: 143–168. [Google Scholar]
  • Jalota SK, Kaur H, Ray SS, Tripathi SR, Vashisht BB, Bal SK. 2012. Mitigating future climate change effects by shifting planting dates of crops in rice-wheat cropping system. Regional Environmental Change 12: 913–922. [Google Scholar]
  • Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJR, et al. 2012. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agronomy for Sustainable Development 32: 329–364. [CrossRef] [Google Scholar]
  • Jeuffroy MH, Gate P, Machet JM, Recous S. 2013a Nitrogen management in arable crops: can available knowledge and tools reconcile agronomic and environmental needs ? Cahiers Agricultures 22: 249–257. DOI: 10.1684/agr.2013.0639 [Google Scholar]
  • Jeuffroy MH, Baranger E, Carrouée B, de Chezelles E, Gosme M, Henault C, et al. 2013b. Nitrous oxide emissions from crop rotations including wheat, oilseed rape and dry peas. Biogeosciences 10: 1787–1797. [Google Scholar]
  • Justes E, Beaudoin N, Bertuzzi P, Charles R, Constantin J, Dürr C, et al. 2012. Réduire les fuites de nitrate au moyen de cultures intermédiaires : conséquences sur les bilans d'eau et d'azote, autres services écosystémiques. Synthèse du rapport d'étude. France: Inra, 60 p. [Google Scholar]
  • Kaczan D, Arslan A, Lipper L. 2013. C limate-smart agriculture? A review of current practice of agroforestry and conservation agriculture in Malawi and Zambia. ESA Working Paper No. 13–07. Roma (Italy): FAO. [Google Scholar]
  • Kates RW, Travis WR, Wilbanks TJ. 2012. Transformational adaptation when incremental adaptations to climate change are insufficient. In: Proceedings of the National Academy of Sciences of the United States of America 109(19): 7156–7161. [Google Scholar]
  • Khosa MK, Sidhu BS, Benbi DK. 2011. Methane emission from rice fields in relation to management of irrigation water. Journal of Environmental Biology 32: 169–172. [PubMed] [Google Scholar]
  • Ko J, Ahuja LR, Saseendran SA, Green TR, Ma L, Nielsen DC, et al. 2012. Climate change impacts on dryland cropping systems in the Central Great Plains, USA. Climatic Change 111: 445–472. [Google Scholar]
  • Kölling A, Elola-Calderón T (eds.). 2012. Organic agriculture: a strategy for climate change adaptation. Brüssels (Belgium): IFOAM EU Group. [Google Scholar]
  • Lal R. 2011. Sequestering carbon in soils of agro-ecosystems. Food Policy 36: S33– S39. [Google Scholar]
  • Lal R, Delgado JA, Groffman PM, Millar N, Dell C, Rotz A. 2011. Management to mitigate and adapt to climate change. Journal of Soil Water Conservation 66: 276–285. [CrossRef] [Google Scholar]
  • Laux P, Jäckel G, Tingem RM, Kunstmann H. 2010. Impact of climate change on agricultural productivity under rainfed conditions in Cameroon. A method to improve attainable crop yields by planting date adaptations. Agricultural and Forest Meteorology 150: 1258–1271. [Google Scholar]
  • Lemaire G, Jeuffroy MH, Gastal F. 2008. Diagnosis tool for plant and crop N status in vegetative stage theory and practices for crop N management. European Journal of Agronomy 28: 614–624. [CrossRef] [Google Scholar]
  • Linquist BA, Adviento-Borbe MA, Pittelkow CM, van Kessel C, van Groenigen KJ. 2012. Fertilizer management practices and greenhouse gas emissions from rice systems: a quantitative review and analysis. Field Crops Research 135: 10–21. [Google Scholar]
  • Lipper L, Thornton PK, Campbell B, Baedeker T, Braimoh A, Bwalya M, et al. 2014. Climate smart agriculture for food security. Nature Climate Change 4: 1068–1072. [Google Scholar]
  • Liu Y, Wu L, Baddeley JA, Watson CA. 2011. Models of biological nitrogen fixation of legumes. A review. Agronomy for Sustainable Development 31: 155–172. [CrossRef] [EDP Sciences] [Google Scholar]
  • Majumdar D. 2003. Methane and nitrous oxide emission from irrigated rice fields: proposed mitigation strategies. Current Science 84: 1317–1326. [Google Scholar]
  • Meza FJ, Silva D, Vigil H. 2008. Climate change impacts on irrigated maize in Mediterranean climates: evaluation of double cropping as an emerging adaptation alternative. Agricultural Systems 98: 21–30. [Google Scholar]
  • Moradi R, Koocheki A, Mahallati MN, Mansoori H. 2013. Adaptation strategies for maize cultivation under climate change in Iran: irrigation and planting date management. Mitigation and Adaptation Strategies for Global Change 18: 265–284. [CrossRef] [Google Scholar]
  • Moriondo M, Bindi M, Kundzewicz ZW, Szwed M, Chorynski A, Matczak P, et al. 2010. Impact and adaptation opportunities for European agriculture in response to climatic change and variability. Mitigation and Adaptation Strategies for Global Change 15: 657–679. [CrossRef] [Google Scholar]
  • Nendel C, Kersebaum KC, Mirschel W, Wenkel KO. 2014. Testing farm management options as climate change adaptation strategies using the MONICA model. European Journal of Agronomy 52: 47–56. [CrossRef] [Google Scholar]
  • Nguyen Q, Hoang MH, Öborn I, van Noordwijk M. 2013. Multipurpose agroforestry as a climate change resiliency option for farmers: an example of local adaptation in Vietnam. Climatic Change 117: 241–257. [Google Scholar]
  • Niggli U, Fließbach A, Hepperly P, Scialabba N. 2009. Low greenhouse gas agriculture: mitigation and adaptation potential of sustainable farming systems. Rome, Italy: FAO. [Google Scholar]
  • Olesen JE, Carter TR, Diaz-Ambrona CH, Fronzek S, Heidmann T, Hickler T, et al. 2007. Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Climatic Change 81: 123–143. [Google Scholar]
  • Olesen JE, Trnka M, Kersebaum KC, Skjelvag A, Seguin B, Peltonen-Sainio P, et al. 2011. Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy 34: 96–112. [CrossRef] [Google Scholar]
  • Pellerin S, Bamière L, Angers D, Béline F, Benoît M, Butault J-P., et al. 2013. How can French agriculture contribute to reducing greenhouse gas emissions? Abatement potential and cost of ten technical measures. Synopsis of the study report. France: Inra, 92 p. [Google Scholar]
  • Pellerin S, Bamière L, Angers D, Béline F, Benoît M, Butault J-P., et al. 2014. Quels leviers techniques pour l'atténuation des émissions de gaz à effet de serre d'origine agricole ? Innovations Agronomiques 37: 1–10 [Google Scholar]
  • Peyrard C, Mary B, Perrin P, Véricel G, Gréhan E, Justes E, et al. 2016. N2O emissions of low input cropping systems as affected by legume and cover crops use. Agriculture, Ecosystems & Environment 224: 145–156. [Google Scholar]
  • de Ponti T, Rijk B, van Ittersum MK. 2012. The crop yield gap between organic and conventional agriculture. Agricultural Systems 108: 1–9. [Google Scholar]
  • Porter JR, Xie L, Challinor V, Cochrane K, Howden SM, Iqbal MM, et al. 2014. Food security and food production systems. In: Climate change 2014: impacts, adaptation, and vulnerability. Cambridge, UK & New York, USA: Cambridge University Press, pp. 485–533. [Google Scholar]
  • Powlson DS, Stirling CM, Jat ML, Gerard BG, Palm CA, Sanchez PA, et al. 2014. Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change 4: 678–683. [Google Scholar]
  • Rao VN, Meinke H, Craufurd PQ, Parsons D, Kropff MJ, Niels PR, et al. 2015. Strategic double cropping on vertisols: a viable rainfed cropping option in the Indian SAT to increase productivity and reduce risk. European Journal of Agronomy 62: 26–37. [CrossRef] [Google Scholar]
  • Ravier C, Jeuffroy M-H., Meynard J-M. 2016. Mismatch between a science-based decision tool and its use: The case of the balance-sheet method for nitrogen fertilization in France. NJAS − Wageningen Journal of Life Sciences 79: 31–40. [CrossRef] [Google Scholar]
  • Rochette P. 2008. No-till only increases N2O emissions in poorly-aerated soils. Soil & Tillage Research 101: 97–100. [Google Scholar]
  • Rochette P, Janzen HH. 2005. Towards a revised coefficient for estimating N2O emissions from legumes. Nutrient Cycling in Agroecosystems 73: 171–179. [CrossRef] [Google Scholar]
  • Rosenzweig C, Tubiello N. 2007. Adaptation and mitigation strategies in agriculture: an analysis of potential synergies. Mitigation and Adaptation Strategies for Global Change 12: 855–873. [CrossRef] [Google Scholar]
  • Sarr B. 2012. Present and future climate change in the semi-arid region of West Africa: a crucial input for practical adaptation in agriculture. Atmospheric Science Letters 13: 108–112. [CrossRef] [Google Scholar]
  • Seifert CA, Lobell DB. 2015. Response of double cropping suitability to climate change in the United States. Environmental Research Letters 10: 024002. [CrossRef] [Google Scholar]
  • Smit B, Skinner MW. 2002. Adaptation options in agriculture to climate change: a typology. Mitigation and Adaptation Strategies for Global Change 7: 85–114. [CrossRef] [Google Scholar]
  • Smith P, Bustamante M, Ahammad H, Clark H, Dong H, Elsiddig EA, et al. 2014. Agriculture, forestry and other land use (AFOLU). In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, et al. (eds). Climate change 2014: mitigation of climate change contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. [Google Scholar]
  • Smith P, Olesen JE. 2010. Synergies between the mitigation of, and adaptation to, climate change in agriculture. The Journal of Agricultural Science 148: 543–552. [Google Scholar]
  • Soriano MA, Orgaz F, Villalobos FJ, Fereres E. 2004. Efficiency of water use of early plantings of sunflower. European Journal of Agronomy 21: 465–476. [CrossRef] [Google Scholar]
  • Stokes C, Howden M (eds.). 2010. Adapting agriculture to climate change. Preparing Australian agriculture, forestry and fisheries for the future CSIRO Publishing, 296 p. [Google Scholar]
  • Supit I, CA van Diepen, AJW de Wit, J Wolf, P Kabat, B Baruth, et al. 2012. Assessing climate change effects on European crop yields using the crop growth monitoring system and a weather generator. Agricultural and Forest Meteorology 164: 96–111. [Google Scholar]
  • Tittonell P. 2015. Agroecology is climate smart. In: Climate Smart Agriculture 2015: Global Science Conference 3, Montpellier (France), p. 19 [Google Scholar]
  • Torquebiau E. (ed). 2015. Changement climatique et agricultures du monde. Paris: Éditions Quae, 328 p. [Google Scholar]
  • Towprayoon S, Smakgahn K, Poonkaew S. 2005. Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields. Chemosphere 59: 1547–1556. [CrossRef] [PubMed] [Google Scholar]
  • Tuck G, Glendining MJ, Smith P, House JI, Wattenbach M. 2006. The potential distribution of bioenergy crops in Europe under present and future climate. Biomass & Bioenergy 30: 183–197. [CrossRef] [EDP Sciences] [Google Scholar]
  • Vadez V, Berger JD, Warkentin T, Asseng S, Ratnakumar P, Rao KPC, et al. 2012. Adaptation of grain legumes to climate change: a review. Agronomy for Sustainable Development 32: 31–44. [CrossRef] [Google Scholar]
  • van Ittersum MK, Howden SM, Asseng S. 2003. Sensitivity of productivity and deep drainage of wheat cropping systems in a Mediterranean environment to changes in CO2, temperature and precipitation. Agriculture, Ecosystems & Environment 97: 255–273. [Google Scholar]
  • Virto I, Barre P, Burlot A, Chenu C. 2012. Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems. Biogeochemistry 108: 17–26. [Google Scholar]
  • Voisin AS, Gueguen J, Huyghe C, Jeuffroy MH, Magrini MB, Meynard JM, et al. 2014. Legumes for feed, food, biomaterials and bioenergy in Europe: a review. Agronomy for Sustainable Development 34: 361–380. [Google Scholar]
  • Waha K, Müller C, Bondeau A, Dietrich JP, Kurukulasuriya P, Heinke J, et al. 2013. Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Global Environmental Change 23: 130–143. [Google Scholar]
  • Wang J, Wang E, Yang X, Zhang F, Yin H. 2012. Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Climatic Change 113: 825–840. [Google Scholar]
  • Waongo M, Laux P, Kunstmann H. 2015. Adaptation to climate change: the impacts of optimized planting dates on attainable maize yields under rainfed conditions in Burkina Faso. Agricultural and Forest Meteorology 205: 23–39. [Google Scholar]
  • Xie BH, Zheng XH, Zhou ZX, Gu JX, Zhu B, Chen X, et al. 2010. Effects of nitrogen fertilizer on CH4 emission from rice fields: multi-site field observations. Plant and Soil 326: 393–401. [Google Scholar]
  • Yan XY, Akiyama H, Yagi K, Akimoto H. 2009. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Global Biogeochemical Cycles 23: GB2002. [Google Scholar]
  • Zentner RP, Campbell CA, Biederbeck VO, Selles F, Lemke R, Jefferson PG, et al. 2004. Long-term assessment of management of an annual legume green manure crop for fallow replacement in the Brown soil zone. Canadian Journal of Plant Science 84: 11–22. [CrossRef] [Google Scholar]
  • Zhao G, Webber H, Hoffmann H, Wolf J, Siebert S, Ewert F. 2015. The implication of irrigation in climate change impact assessment: a European-wide study. Global Change Biology 21: 4031–4048. [CrossRef] [PubMed] [Google Scholar]
  • Ziadi N, Belanger G, Claessens A, Lefebvre L, Tremblay N, Cambouris AN, et al. 2010. Plant-based diagnostic tools for evaluating wheat nitrogen status. Crop Science 50: 2580–2590. [Google Scholar]
  • Ziska LH, Bunce JA, Shimono H, Gealy DR, Baker JT, Newton PCD, et al. 2012. Food security and climate change: on the potential to adapt global crop production by active selection to rising atmospheric carbon dioxide. In: Proceedings of the Royal Society B: Biological Sciences 279(1745): 4097–4105. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.