Open Access
Numéro |
Cah. Agric.
Volume 31, 2022
|
|
---|---|---|
Numéro d'article | 16 | |
Nombre de pages | 7 | |
DOI | https://doi.org/10.1051/cagri/2022012 | |
Publié en ligne | 8 juillet 2022 |
- Allen T, Murray KA, Zambrana-Torrelio C, Morse SS, Rondinini C, Di Marco M, et al. 2017. Global hotspots and correlates of emerging zoonotic diseases. Nature Communications 8(1): 1124. https://doi.org/10.1038/s41467-017-00923-8. [CrossRef] [PubMed] [Google Scholar]
- Atkins KE, Read AF, Savill NJ, Renz KG, Islam AF, Walkden-Brown SW, et al. 2013. Vaccination and reduced cohort duration can drive virulence evolution: Marek’s disease virus and industrialized agriculture. Evolution 67(3): 851–860. https://doi.org/10.1111/j.1558-5646.2012.01803.x. [CrossRef] [Google Scholar]
- Azhar EI, El-Kafrawy SA, Farraj SA, Hassan AM, Al-Saeed MS, Hashem AM, et al. 2014. Evidence for camel-to-human transmission of MERS coronavirus. The New England Journal of Medicine 370(26): 2499–2505. https://doi.org/10.1056/NEJMoa1401505. [CrossRef] [PubMed] [Google Scholar]
- Biswas PK, Christensen JP, Ahmed SS, Barua H, Das A, Rahman MH, et al. 2009. Risk factors for infection with highly pathogenic influenza A virus (H5N1) in commercial chickens in Bangladesh. Veterinary Record 164(24): 743–746. https://doi.org/164/24/743 [pii]. [CrossRef] [Google Scholar]
- Burgos S, Hinrichs S, Otte J, Pfeiffer D, Roland-Holst D. 2008. Poultry, HPAI and livelihoods in Viet Nam – A review. Rome (Italy): Food and Agriculture Organisation of the United Nations. [Google Scholar]
- Caron A, Cappelle J, Cumming GS, de Garine-Wichatitsky M, Gaidet N. 2015. Bridge hosts, a missing link for disease ecology in multi-host systems. Veterinary Research 46: 83. https://doi.org/10.1186/s13567-015-0217-9. [CrossRef] [PubMed] [Google Scholar]
- Chen D, Abler D, Zhou D, Yu X, Thompson W. 2015. A meta-analysis of food demand elasticities for China. Applied Economic Perspectives and Policy 38(1): 50–72. https://doi.org/10.1093/aepp/ppv006. [Google Scholar]
- Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PSK, Ksiazek TG, et al. 1999. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. The Lancet 354(9186): 1257–1259. https://doi.org/10.1016/s0140-6736(99)04299-3. [CrossRef] [Google Scholar]
- Claas ECJ, Osterhaus ADME, van Beek R, De Jong JC, Rimmelzwaan GF, Senne D.A. et al. 1998. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. The Lancet 351(9101): 472–477. https://doi.org/10.1016/s0140-6736(97)11212-0. [CrossRef] [Google Scholar]
- Coopérer en information scientifique et technique. [2016/10/19]. http://coop-ist.cirad.fr/ [Google Scholar]
- Dawood FS, Jain S, Finelli L, Shaw MW, Lindstrom S, Garten RJ, et al. 2009. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. The New England Journal of Medecine 360(25): 2605–2615. https://doi.org/10.1056/NEJMoa0903810. [CrossRef] [PubMed] [Google Scholar]
- Delabouglise A, Thanh NTL, Xuyen HTA, Nguyen-Van-Yen B, Tuyet PN, Lam HM, et al. 2020. Poultry farmer response to disease outbreaks in smallholder farming systems in southern Vietnam. Elife 9. https://doi.org/10.7554/eLife.59212. [Google Scholar]
- Delabouglise A, Dao TH, Truong DB, Nguyen TT, Nguyen NT, Duboz R, et al. 2015. When private actors matter: information-sharing network and surveillance of highly pathogenic avian influenza in Vietnam. Acta Tropica 147: 38–44. https://doi.org/10.1016/j.actatropica.2015.03.025. [CrossRef] [PubMed] [Google Scholar]
- Desvaux S, Grosbois V, Pham TTH, Fenwick S, Tollis S, Pham NH, et al. 2011. Risk factors of highly pathogenic avian influenza H5N1 occurrence at the village and farm levels in the Red River Delta Region in Vietnam. Transboundary Emerging Diseases 58(6): 492–502. https://doi.org/10.1111/j.1865-1682.2011.01227.x. [CrossRef] [Google Scholar]
- Dhingra MS, Artois J, Dellicour S, Lemey P, Dauphin G, Von Dobschuetz S, et al. 2018. Geographical and historical patterns in the emergences of novel highly pathogenic avian influenza (HPAI) H5 and H7 viruses in poultry. Frontiers in Veterinary Science 5. https://doi.org/10.3389/fvets.2018.00084. [PubMed] [Google Scholar]
- Diamond J. 2002. Evolution, consequences and future of plant and animal domestication. Nature 418(6898): 700–707. https://doi.org/10.1038/nature01019. [CrossRef] [PubMed] [Google Scholar]
- Duonamou L, Konate A, Djego Djossou S, Mensah GA, Xu J, Humle T. 2020. Consumer perceptions and reported wild and domestic meat and fish consumption behavior during the Ebola epidemic in Guinea, West Africa. Peer J 8: e9229. https://doi.org/10.7717/peerj.9229. [CrossRef] [Google Scholar]
- Dux A, Lequime S, Patrono LV, Vrancken B, Boral S, Gogarten JF, et al. 2020. Measles virus and rinderpest virus divergence dated to the sixth century BCE. Science 368(6497): 1367–1370. https://doi.org/10.1126/science.aba9411. [CrossRef] [PubMed] [Google Scholar]
- Ebata A, MacGregor H, Loevinsohn M, Win K.S.. 2020. Why behaviours do not change: structural constraints that influence household decisions to control pig diseases in Myanmar. Preventive Veterinary Medicine 183. https://doi.org/10.1016/j.prevetmed.2020.105138. [Google Scholar]
- Enticott G, Franklin A, Van Winden S. 2012. Biosecurity and food security: spatial strategies for combating bovine tuberculosis in the UK. The Geographical Journal 178(4): 327–337. https://doi.org/10.1111/j.1475-4959.2012.00475.x. [CrossRef] [Google Scholar]
- FAO. 2006. Livestock’s long shadow: environmental issues and options. Rome (Italy): Food and Agricultural Organization of the United Nations. [Google Scholar]
- FAO. 2011. A value chain approach to animal diseases risk management – Technical foundations and practical framework for field application. Rome (Italy): Food and Agricultural Organization of the United Nations. [Google Scholar]
- FAOSTAT. 2020. Database. [2021/07/12]. http://www.fao.org/faostat/en/#data. [Google Scholar]
- Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, et al. 2013. Human infection with a novel avian-origin influenza A (H7N9) virus. The New England Journal of Medecine 368(20): 1888–1897. https://doi.org/10.1056/NEJMoa1304459. [CrossRef] [PubMed] [Google Scholar]
- Galtier F, David-Benz H, Subervie J, Egg J. 2014. Les systèmes d’information sur les marchés agricoles dans les pays en développement : nouveaux modèles, nouveaux impacts. Cahiers Agricultures 23(4–5): 245–258. https://doi.org/10.1684/agr.2014.0715. [CrossRef] [Google Scholar]
- Gerdes GH. 2004. Rift Valley Fever. Revue scientifique et technique 23: 613–623. https://doi.org/10.20506/rst.23.2.1500. [CrossRef] [PubMed] [Google Scholar]
- Gibb R, Redding DW, Chin KQ, Donnelly CA, Blackburn TM, Newbold T, et al. 2020. Zoonotic host diversity increases in human-dominated ecosystems. Nature 584: 398–402. https://doi.org/10.1038/s41586-020-2562-8. [CrossRef] [PubMed] [Google Scholar]
- Gilbert M, Xiao X, Robinson TP. 2017. Intensifying poultry production systems and the emergence of avian influenza in China: a “One Health/Ecohealth” epitome. Archives of Public Health 75: 48. https://doi.org/10.1186/s13690-017-0218-4. [CrossRef] [Google Scholar]
- Gilbert M, Conchedda G, Van Boeckel TP, Cinardi G, Linard C, Nicolas G, et al. 2015. Income disparities and the global distribution of intensively farmed chicken and pigs. PLoS One 10(7): e0133381. https://doi.org/10.1371/journal.pone.0133381. [CrossRef] [PubMed] [Google Scholar]
- Gilbert W, Thomas LF, Coyne L, Rushton J. 2021. Review: mitigating the risks posed by intensification in livestock production: the examples of antimicrobial resistance and zoonoses. Animal 15(2): 100–123. https://doi.org/10.1016/j.animal.2020.100123. [CrossRef] [PubMed] [Google Scholar]
- Golden CE, Rothrock M.J. Jr., Mishra A. 2021. Mapping foodborne pathogen contamination throughout the conventional and alternative poultry supply chains. Poultry Science 100(7): 101–157. https://doi.org/10.1016/j.psj.2021.101157. [CrossRef] [PubMed] [Google Scholar]
- Goodman NW, Edwards MB. 2014. Medical writing: a prescription for clarity, 4th ed. Cambridge: Cambridge University Press, 382 p. [Google Scholar]
- Haider N, Rothman-Ostrow P, Osman AY, Arruda LB, Macfarlane-Berry L, Elton L, et al. 2020. COVID-19 – Zoonosis or emerging infectious disease? Front Public Health 8: 596–944. https://doi.org/10.3389/fpubh.2020.596944. [CrossRef] [Google Scholar]
- Hennessey M, Fournie G, Hoque MA, Biswas PK, Alarcon P, Ebata A, et al. 2021. Intensification of fragility: poultry production and distribution in Bangladesh and its implications for disease risk. Preventive Veterinary Medicine 191: 105–367. https://doi.org/10.1016/j.prevetmed.2021.105367. [CrossRef] [PubMed] [Google Scholar]
- Hosny FA. 2006. The structure and importance of the commercial and village based poultry systems in Egypt. Rome (Italy): Food and Agriculture Organisation of the United Nations. [Google Scholar]
- Ifft J, Roland-Holst D, Zilberman D. 2012. Consumer valuation of safety-labeled free-range chicken: results of a field experiment in Hanoi. Agricultural Economics 43(6): 607–620. https://doi.org/10.1111/j.1574-0862.2012.00607.x. [CrossRef] [Google Scholar]
- Jones BA, Grace D, Kock R, Alonso S, Rushton J, Said MY, et al. 2013. Zoonosis emergence linked to agricultural intensification and environmental change. Proceedings of the National Academy of Sciences of the United States of America 110(21): 8399–8404. https://doi.org/10.1073/pnas.1208059110. [CrossRef] [PubMed] [Google Scholar]
- Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL et al. 2008. Global trends in emerging infectious diseases. Nature 451(7181): 990–993. https://doi.org/10.1038/nature06536. [CrossRef] [PubMed] [Google Scholar]
- Karesh WB, Dobson A, Lloyd-Smith JO, Lubroth J, Dixon MA, Bennett M, et al. 2012. Ecology of zoonoses: natural and unnatural histories. The Lancet 380(9857): 1936–1945. https://doi.org/10.1016/s0140-6736(12)61678-x. [CrossRef] [Google Scholar]
- Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD, Holt RD, et al. 2010. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468(7324): 647–652. https://doi.org/10.1038/nature09575. [CrossRef] [PubMed] [Google Scholar]
- Kennedy DA, Kurath G, Brito IL, Purcell MK, Read AF, Winton JR, et al. 2016. Potential drivers of virulence evolution in aquaculture. Evolutionary Applications 9(2): 344–354. https://doi.org/10.1111/eva.12342. [CrossRef] [PubMed] [Google Scholar]
- Kilpatrick AM, Chmura AA, Gibbons DW, Fleischer RC, Marra PP, Daszak P. 2006. Predicting the global spread of H5N1 avian influenza. Proceedings of the National Academy of Sciences of the United States of America 103(51): 19368–19373. https://doi.org/10.1073/pnas.0609227103. [CrossRef] [PubMed] [Google Scholar]
- Kock R, Caceres-Escobar H. 2022. Situation analysis on the roles and risks of wildlife in the emergence of human infectious diseases. Gland (Switzerland): IUCN. https://doi.org/10.2305/IUCN.CH.2022.01.en. [Google Scholar]
- Kung NY, Morris RS, Perkins NR, Sims LD, Ellis TM, Bissett L, et al. 2007. Risk for infection with highly pathogenic influenza A virus (H5N1) in chickens, Hong Kong, 2002. Emerging Infectious Diseases 13(3): 412–418. https://doi.org/10.3201/eid1303.060365. [CrossRef] [PubMed] [Google Scholar]
- Lepoivre P, Kummert J. 1989. Le diagnostic des maladies parasitaires. In : Semal J, ed. Traité de pathologie végétale. Gembloux (Belgique): Presses agronomiques de Gembloux, pp. 74–96. [Google Scholar]
- Li Q, Zhou L, Zhou M, Chen Z, Li F, Wu H, et al. 2014. Epidemiology of human infections with avian influenza A(H7N9) virus in China. The New England Journal of Medicine 370(6): 520–532. https://doi.org/10.1056/NEJMoa1304617. [CrossRef] [PubMed] [Google Scholar]
- Magdelaine P, Spiess MP, Valceschini E. 2008. Poultry meat consumption trends in Europe. World’s Poultry Science Journal 64(01): 53–64. https://doi.org/10.1017/s0043933907001717. [CrossRef] [Google Scholar]
- Mann E, Streng S, Bergeron J, Kircher A. 2015. A review of the role of food and the food system in the transmission and spread of Ebolavirus. PLoS Negl Trop Dis 9(12): e0004160. https://doi.org/10.1371/journal.pntd.0004160. [CrossRef] [PubMed] [Google Scholar]
- McMahon BJ, Morand S, Gray JS. 2018. Ecosystem change and zoonoses in the Anthropocene. Zoonoses Public Health 65(7): 755–765. https://doi.org/10.1111/zph.12489. [CrossRef] [PubMed] [Google Scholar]
- Obi TU, Olubukola A, Maina GA. 2008. Pro-poor HPAI risk reduction strategies in Nigeria. Rome (Italy): Food and Agriculture Organisation of the United Nations. [Google Scholar]
- Otte J, Pfeiffer DU, Soares Magalhaes R, Burgos S, Roland-Holst D. 2008. Flock size and HPAI risk in Cambodia, Thailand, and Viet Nam. Rome (Italy): Food and Agriculture Organisation of the United Nations. [Google Scholar]
- Pearce-Duvet JMC. 2006. The origin of human pathogens: evaluating the role of agriculture and domestic animals in the evolution of human disease. Biological Reviews 81(03): 369. https://doi.org/10.1017/s1464793106007020. [CrossRef] [Google Scholar]
- Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, Graham AL, et al. 2017. Pathways to zoonotic spillover. Nature Reviews Microbiology 15(8): 502–510. https://doi.org/10.1038/nrmicro.2017.45. [CrossRef] [PubMed] [Google Scholar]
- Pulliam JR, Epstein JH, Dushoff J, Rahman SA, Bunning M, Jamaluddin AA, et al. 2012. Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis. Journal of the Royal Society Interface 9(66): 89–101. https://doi.org/10.1098/rsif.2011.0223. [CrossRef] [PubMed] [Google Scholar]
- Pyburn DG, Gamble HR, Wagstrom EA, Anderson LA, Miller LE. 2005. Trichinae certification in the United States pork industry. Veterinary Parasitology 132(1–2): 179–183. https://doi.org/10.1016/j.vetpar.2005.05.051. [CrossRef] [PubMed] [Google Scholar]
- Robinson TP, Thornton PK, Franceschini G, Kruska RL, Chiozza F, Notenbaert A, et al. 2011. Global livestock production systems. Rome (Italy): Food and Agriculture Organization of the United Nations (FAO) and International Livestock Research Institute (ILRI), 152 p. [Google Scholar]
- Rohr JR, Barrett CB, Civitello DJ, Craft ME, Delius B, DeLeo GA, et al. 2019. Emerging human infectious diseases and the links to global food production. Nature Sustainability 2(6): 445–456. https://doi.org/10.1038/s41893-019-0293-3. [CrossRef] [PubMed] [Google Scholar]
- Steinfeld H, Mooney HA, Schneider F, Neville LE. 2010. Livestock in a changing landscape: drivers, consequences and responses. Washington D.C. (USA): Island Press, 450 p. [Google Scholar]
- Sudarman A, Rich KM, Randolph T, Unger F. 2010. Poultry value chains and HPAI in Indonesia: the case of Bogor. Rome (Italy): Food and Agriculture Organisation of the United Nations. [Google Scholar]
- Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG. 2005. Characterization of the 1918 influenza virus polymerase genes. Nature 437(7060): 889–893. https://doi.org/10.1038/nature04230. [CrossRef] [PubMed] [Google Scholar]
- Trovao NS, Nelson MI. 2020. When pigs fly: pandemic influenza enters the 21st century. PLoS Pathog 16(3): e1008259. https://doi.org/10.1371/journal.ppat.1008259. [CrossRef] [PubMed] [Google Scholar]
- United Nations. 2021. Population dynamics. [2021/07/12]. https://population.un.org/wpp/. [Google Scholar]
- Van Boeckel TP, Thanapongtharm W, Robinson T, Biradar CM, Xiao X, Gilbert M. 2012. Improving risk models for avian influenza: the role of intensive poultry farming and flooded land during the 2004 Thailand epidemic. PLoS One 7(11): e49528. https://doi.org/10.1371/journal.pone.0049528. [CrossRef] [PubMed] [Google Scholar]
- Vijgen L, Keyaerts E, Lemey P, Maes P, Van Reeth K, Nauwynck H, et al. 2006. Evolutionary history of the closely related group 2 coronaviruses: porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43. Journal of Virology 80(14): 7270–7274. https://doi.org/10.1128/JVI.02675-05. [CrossRef] [PubMed] [Google Scholar]
- Walker P, Cauchemez S, Hartemink N, Tiensin T, Ghani AC. 2012. Outbreaks of H5N1 in poultry in Thailand: the relative role of poultry production types in sustaining transmission and the impact of active surveillance in control. Journal of The Royal Society Interface 9(73): 1836–1845. https://doi.org/10.1098/rsif.2012.0022. [CrossRef] [PubMed] [Google Scholar]
- Wardeh M, Baylis M, Blagrove MSC. 2021. Predicting mammalian hosts in which novel coronaviruses can be generated. Nature Communications 12(1): 780. https://doi.org/10.1038/s41467-021-21034-5. [CrossRef] [PubMed] [Google Scholar]
- Wolfe ND, Dunavan CP, Diamond J. 2007. Origins of major human infectious diseases. Nature 447(7142): 279–283. https://doi.org/10.1038/nature05775. [CrossRef] [PubMed] [Google Scholar]
- Zhou Y, Staatz J. 2016. Projected demand and supply for various foods in West Africa: implications for investments and food policy. Food Policy 61: 198–212. https://doi.org/10.1016/j.foodpol.2016.04.002. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.