Issue
Cah. Agric.
Volume 26, Number 3, Mai-Juin 2017
Les agricultures face au changement climatique. Coordonnateur : Emmanuel Torquebiau
Article Number 34001
Number of page(s) 11
Section Synthèses / General Reviews
DOI https://doi.org/10.1051/cagri/2017018
Published online 12 May 2017
  • Allison EH, Perry AL, Badjeck M-C., Adger WN, Brown K, Conway D, et al. 2009. Vulnerability of national economies to the impacts of climate change on fisheries. Fish and Fisheries 10: 173–196. [CrossRef] [Google Scholar]
  • Alric B. 2006. L'influence des perturbations locales sur la vulnérabilité et la réponse des réseaux trophiques pélagiques lacustres face au changement climatique. Thèse de doctorat, université de Grenoble (France). [Google Scholar]
  • Anh NL. 2014. Climate proofing aquaculture: a case study on pangasius farming in the Mekong Delta, Vietnam. PhD thesis, Wageningen University (Wageningen [NL]). [Google Scholar]
  • Arias-Schreiber M, Niquen M, Bouchon M. 2011. Coping strategies to deal with environmental variability and extreme climatic events in the Peruvian Anchovy Fishery. Sustainability 3: 823–846. [CrossRef] [Google Scholar]
  • Asmah R, Karikari A, Al-Shihi J, Handisyde N, Xia F, Telfer T, et al. 2015. Spatial models for optimization of zones for improved and sustainable cage aquaculture in Volta Lake, Ghana. In: Aquaculture Europe 2015, Rotterdam, Netherlands. Available from: https://www.was.org/easOnline/AbstractDetail.aspx?i=4115. [Google Scholar]
  • Blanchard JL, Jennings S, Holmes R, Harle J, Merino G, Allen JI, et al. 2012. Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philosophical Transactions of the Royal Society B 367 (1605): 2979–2989. doi:10.1098/rstb.2012.0231. [CrossRef] [Google Scholar]
  • Cacot P, Lazard J. 2009. La domestication des poissons du Mékong : les enjeux et le potentiel aquacole. Cah Agric 18 (2–3): 125–135. [Google Scholar]
  • Castaneda R, McGee M, Velasco M. 2010. Pangasius juveniles tolerate moderate salinity in test. Global Aquaculture Advocate: 27–28. [Google Scholar]
  • Clota F. 2006. Rapport de mission au Laos. Available from http://umr-intrepid.cirad.fr/content/download/4361/32542/version/1/file/F.+CLOTA,+CIRAD,rapport+de+mission+Laos+2006.pdf, last consult: 10/2016. [Google Scholar]
  • De Silva SS, Soto D. 2009. Climate change and aquaculture: potential impacts, adaptation and mitigation. In: Cochrane K, De Young C, Soto D, Bahri T, eds. Climate change implications for fisheries and aquaculture: overview of current scientific knowledge. FAO Fisheries and Aquaculture Technical Paper No. 530. Rome: FAO, pp. 156–212. [Google Scholar]
  • De Silva SS, Phuong TN. 2011. Striped catfish farming in the Mekong Delta: a tumultuous path to a global success. Reviews in Aquaculture 3: 45–73 [CrossRef] [Google Scholar]
  • De Silva SS. 2012. Climate change impacts: challenges for aquaculture. In: Subasinghe RP, Arthur JR, Bartley DM, De Silva SS, Halwart M, Hishamunda N, et al., eds. In: Farming the Waters for People and Food. Proceedings of the Global Conference on Aquaculture 2010, Phuket, Thailand. Rome: FAO and Bangkok: NACA, pp. 75–110. [Google Scholar]
  • Do TTH, Tran NTQ. 2012. The effect of salinity on the embryonic development and osmoregulatory of the striped catfish (Pangasianodon hypophthalmus) larvae and fingerling stages. Journal of Science 21b: 29–37, Can Tho University, Vietnam, in Vietnamese with English summary. [Google Scholar]
  • Falkernmark M, Rockstöm J, Karlberg L. 2009. Present and future water requirements for feeding humanity. Food Security 1: 59–69. [CrossRef] [Google Scholar]
  • FAO. 2014. The state of world fisheries and aquaculture 2014. Contributing to food security and nutrition for all. Rome: FAO. [Google Scholar]
  • FAO. 2016. The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. Rome: FAO. [Google Scholar]
  • Ficke AD, Myrick CA, Hansen LJ. 2007. Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries 17: 581–613. [CrossRef] [Google Scholar]
  • Fish Farmer. 2008. Norwegian study on impact of climate change on farmed salmon. p. 1. Available from www.fishfarmer-magazine.com/news/fullstory.php/aid/1490/. [Google Scholar]
  • Grinsted A, Moore JC, Jevrejeva S. 2009. Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD. Climate Dynamics 34: 461. doi: 10.1007/s00382-008-0507-2. [CrossRef] [Google Scholar]
  • Gros P. 2014. La pêche, une activité ancestrale en mutation. Cah Agric 23: 4–17. [Google Scholar]
  • Gruber N, Hauri C, Lachkar Z, Loher D, Frölicher TL, Plattner GK. 2012. Rapid progression of ocean acidification in the California current system. Science 337: 220–223. doi: 10.1126/science.1216773. [CrossRef] [PubMed] [Google Scholar]
  • Halls AS, Johns M. 2013. Assessment of the vulnerability of the Mekong Delta Pangasius catfish industry to development and climate change in the Lower Mekong Basin. Report prepared for the Sustainable Fisheries Partnership. Bath, UK: Johns Associates Limited. [Google Scholar]
  • IPCC. 2014. Climate change 2014: synthesis report. Available from https://www.ipcc.ch/report/ar5/syr/. [Google Scholar]
  • Kayansamruaj P, Pirarat N, Hirono I, Rodkhum C. 2014. Increasing of temperature induces pathogenicity of Streptococcus agalactiae and the up-regulation of inflammatory related genes in infected Nile tilapia (Oreochromis niloticus). Veterinary microbiology 172 (1): 265–271. [CrossRef] [PubMed] [Google Scholar]
  • Keeling RF, Körtzinger A, Gruber N. 2010. Ocean deoxygenation in a warming world. Annual Review of Marine Science 2: 199–229. doi: 10.1146/annurev.marine.010908.163855. [CrossRef] [PubMed] [Google Scholar]
  • Klinger D, Naylor R. 2012. Searching for solutions in aquaculture: charting a sustainable course. Annu Rev Environ Resour 37:247–276. doi: 10.1146/annurev-environ-021111-161531. [CrossRef] [Google Scholar]
  • Lazard J, Cacot P, Slembrouck J, Legendre M. 2009. La pisciculture des Pangasiidae. Cah Agric 18 (2–3): 164–173. [Google Scholar]
  • Lazard J, Rey-Valette H, Aubin J, Mathé S, Chia E, Caruso D, et al. 2014. Assessing aquaculture sustainability: a comparative methodology. International Journal of Sustainable Development & World Ecology 21(6): 503–511. doi: 10.1080/13504509.2014.964350. [CrossRef] [Google Scholar]
  • Lazzaro X, Starling F. 2005 Using biomanipulation to control eutrophication in a shallow tropical urban reservoir (Lago Paranoa, Brazil). Restoration and Management of Tropical Eutrophic Lakes: 361–387. [Google Scholar]
  • Levitus S, Antonov JI, Boyer TP, Baranova OK, Garcia HE, Locarnini RA, et al. 2012. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophysical Research Letters 39: L10603. doi:10.1029/2012GL051106. [CrossRef] [Google Scholar]
  • Marcusso PF, Aguinaga JY, Claudiano GdS, Eto SF, Fernandes DC, Mello H, et al. 2015. Influence of temperature on Streptococcus agalactiae infection in Nile tilapia. Braz J Vet Res Anim Sci 52(1): 57–62. [CrossRef] [Google Scholar]
  • Médale F, Le Boucher R, Dupont-Nivet M, Quillet E, Aubin J, Panserat S. 2013. Des aliments à base de végétaux pour les poissons d'élevage. Inra Prod Anim 26(4): 303–316. [Google Scholar]
  • Merino M, Barange M, Blanchard JL, Harle J, Holmes R, Allen I, et al. 2012. Can marine fisheries and aquaculture meet fish demand from a growing human population in a changing climate ? Global Environmental Change 22(4): 795–806. doi: 10.1016/j.gloenvcha.2012.03.003. [CrossRef] [Google Scholar]
  • Nguyen TTT, De Silva SS. 2006. Fresh water finfish biodiversity and conservation: an Asian perspective. Biodiversity and Conservation 15: 3543–3568. [CrossRef] [Google Scholar]
  • Nguyen CL, Do TTH, Huong VNS, Nguyen TP. 2011. Physiological changes and growth of the striped catfish (Pangasianodon hypophthalmus) exposed to different salinities. Journal of Science 17a: 60–69, Can Tho University, Vietnam, in Vietnamese, English summary. [Google Scholar]
  • Sabine CL, Tanhua T. 2010. Estimation of anthropogenic CO2 inventories in the ocean. Annual Review of Marine Science 2: 175–198. doi: 10.1146/annurev-marine-120308-080947. [CrossRef] [PubMed] [Google Scholar]
  • Seibel BA. 2011. Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones. Journal of Experimental Biology 214(2): 326–336. doi: 10.1242/jeb.049171. [CrossRef] [Google Scholar]
  • Smith ADM, Brown CJ, Bulman CM, Fulton EA, Johnson P, Kaplan IC, et al. 2011. Impacts of fishing low-trophic level species on marine ecosystems. Science 333: 1147–1150. [CrossRef] [PubMed] [Google Scholar]
  • Spataru P, Gophen M. 1985. Feeding behaviour of silver carp Hypophthalmichthys molitrix Val. and its impact on the food web in Lake Kinneret, Israel. Hydrobiologia 120: 53. doi:10.1007/BF00034590. [CrossRef] [Google Scholar]
  • Tacon AGJ, Metian M. 2015. Feed matters: satisfying the feed demand of aquaculture. Reviews in Fisheries Science & Aquaculture 23: 1–10. [CrossRef] [Google Scholar]
  • Tacon AGJ, Metian M, Turchini GM, De Silva SS. 2010. Responsible aquaculture and trophic level implications to global fish supply. Reviews in Fisheries Science 18 (1): 94–105. [CrossRef] [Google Scholar]
  • Tacon AGJ, Hasan MR, Metian M. 2011. Demand and supply of feed ingredients for farmed fish and crustaceans: trends and prospects. FAO Fisheries and Aquaculture Technical Paper No. 564. Rome: FAO. [Google Scholar]
  • Tal Y, Schreier HJ, Sowers KR, Stubblefield JD, Place AR. 2009. Environmentally sustainable land based marine aquaculture. Aquaculture 286: 28–35. [CrossRef] [Google Scholar]
  • Tan XH. 2008. Study on climate change scenarios assessment for Ca Mau Province. Technical report. Ho Chi Minh City (Vietnam): Southern Institute for Water Resources Planning. [Google Scholar]
  • Thackery SJ, Sparks TH, Frederiksen M, Burthe S, Bacon PJ, Bell JR, et al. 2010. Trophic level asynchrony in rates of phenological change of marine, freshwater and terrestrial environments. Global Change Biology 16: 3304–3313. [CrossRef] [Google Scholar]
  • Timmons MB, Ebeling JM. 2010. Recirculating aquaculture. Ithaca, NY: Cayuga Aqua Ventures. [Google Scholar]
  • Travers M-A., Basuyaux O, Le Goic N, Huchette S, Nicolas J-L., Koken M, et al. 2009. Influence of temperature and spawning effort on Haliotis tuberculata mortalities caused by Vibrio harveyi: an example of emerging vibriosis linked to global warming. Global Change Biology 15: 1365–1376. [CrossRef] [Google Scholar]
  • Tyedmers P, Pelletier N. 2007. Biophysical accounting in aquaculture: insights from current practice and the need for methodological development. In: Bartley DM, Brugệre C, Soto D, Gerber P, Harvey B, eds. Comparative assessment of the environment costs of aquaculture and other food production sectors: methods of meaningful comparisons. FAO Fisheries Proceedings No. 10. Rome: FAO, pp. 229–241. [Google Scholar]
  • Vass KK, Das MK, Srivastava PK, Dey S. 2009. Assessing the impact of climate change on inland fisheries in River Ganga and the plains in India. Aquatic Ecosystem Health & Management 2: 138–151. [CrossRef] [Google Scholar]
  • Verdegem MCJ, Bosma RH, Verreth JAJ. 2006. Reducing water use for animal production through aquaculture. Int J Water Resour Dev 22: 101–113. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.