Issue
Cah. Agric.
Volume 31, 2022
Oil palm in Mexico and in the Americas / Le palmier à huile au Mexique et en Amérique latine. Coordonnateurs : Laurène Feintrenie, Cesar J. Vázquez Navarrete, Luz del Carmen Lagunes Espinoza
Article Number 3
Number of page(s) 7
DOI https://doi.org/10.1051/cagri/2021038
Published online 17 January 2022
  • Abrizah A. 2012. A bibliometric study on the worldwide research productivity of scientists in Elaeis guineensis Jacq. and Elaeis oleifera. Journal Oil Palm Research 24: 1459–1472. [Google Scholar]
  • Abdullah MNB, Mohamad YMS, Sharom ML, Zulkafli MZB. 2017. Composite useful as a fertilizer and a soil amelioration agent, comprises nanoporous zeolite and oil palm bunch ash. Patent. [Google Scholar]
  • Aguilar-Gallegos N, Munoz-Rodriguez M, Santoyo-Cortes H, Aguilar-Avila J, Klerkx L. 2015. Information networks that generate economic value: A study on clusters of adopters of new or improved technologies and practices among oil palm growers in Mexico. Agricultural Systems 135: 122–132. https://doi.org/10.1016/j.agsy.2015.01.003. [Google Scholar]
  • Alonso-Rodriguez AM, Finegan B, Fiedler K. 2017. Neotropical moth assemblages degrade due to oil palm expansion. Biodiversity and Conservation 26: 2295–2326. https://doi.org/10.1007/s10531-017-1357-1. [Google Scholar]
  • Aristizabal V, Garcia CAV, Cardona CA. 2016. Integrated Production of Different Types of Bioenergy from Oil Palm Through Biorefinery Concept. Waste and Biomass Valorization 7: 737–745. https://doi.org/10.1007/s12649-016-9564-7. [Google Scholar]
  • Bartol T, Budimir G, Dekleva-Smrekar D, Pusnik M, Juznic P. 2014. Assessment of research fields in Scopus and Web of Science in the view of national research evaluation in Slovenia. Scientometrics 98: 1491–1504. https://doi.org/10.1007/s11192-013-1148-8. [Google Scholar]
  • Bastos de Matos GS, Fernandes AR, Salvador Wadt PG, de Abreu Pina AJ, Franzini VI, Nascimento Ramos HM. 2017. The use of DRIS for nutritional diagnosis in oil palm in the State of Para. Revista Brasileira De Ciencia Do Solo 41: e0150466. https://doi.org/10.1590/18069657rbcs20150466. [Google Scholar]
  • Bennett A, Ravikumar A, Cronkleton P. 2018. The effects of rural development policy on land rights distribution and land use scenarios: The case of oil palm in the Peruvian Amazon. Land Use Policy 70: 84–93. https://doi.org/10.1016/j.landusepol.2017.10.011. [Google Scholar]
  • Cardoso A, Laviola BG, Santos GS, de Sousa HU, de Oliveira HB, Veras LC, et al. 2017. Opportunities and challenges for sustainable production of A. aculeata through agroforestry systems. Industrial Crops and Products 107: 573–580. https://doi.org/10.1016/j.indcrop.2017.04.023. [Google Scholar]
  • Castellanos-Navarrete A, Jansen K. 2015. Oil palm expansion without enclosure: smallholders and environmental narratives. Journal of Peasant Studies 42: 791–816. https://doi.org/10.1080/03066150.2015.1016920. [Google Scholar]
  • Castellanos-Navarrete A, Jansen K. 2017. Why do smallholders plant biofuel crops? The “politics of consent” in Mexico. Geoforum 87: 15–27. https://doi.org/10.1016/j.geoforum.2017.09.019. [Google Scholar]
  • Castellanos-Navarrete A, Jansen K. 2018. Is oil palm expansion a challenge to agroecology? Smallholders practising industrial farming in Mexico. Journal of Agrarian Change 18: 132–155. https://doi.org/10.1111/joac.12195. [Google Scholar]
  • Contreras ÁP, Cayón G, Corchuelo G. 2012. Models to estimate the bunch dry weight in African oil palm (Elaeis guineensis Jacq.), American oil palm (Elaeis oleifera H.B.K. Cortes) and the interspecific hybrid (E. oleifera x E. guineensis). Agronomía Colombiana 30: 46–51. [Google Scholar]
  • Cooper HM, Hedges LV, Valentine JC. 2009. The handbook of research synthesis and meta-analysis. London: Rusell Sage Foundation. [Google Scholar]
  • Cordova-Ballona L, Sanchez-Soto S. 2008. Bionomics data and descriptions of the immatures of Calyptocephala gerstaeckeri Boheman (Coleoptera: Chrysomelidae), pest of the oil palm (Elaeis guineensis J.) and camedor palm (Chamaedorea elegans Mart.) (Arecaceae) in Tabasco, Mexico. Neotropical Entomology 37: 674–680. https://doi.org/10.1590/S1519-566x2008000600008. [Google Scholar]
  • De Farias Neto JT, Clement CR, Vilela de Resende MD. 2013. Estimates of genetic parameters and selection gain for fruit production in open-pollinated progenies of peach palm in the State of Para, Brazil. Bragantia 72: 122–126. https://doi.org/10.1590/S0006-87052013000200002. [Google Scholar]
  • Fan Z, Zhu Y, Xu J, Song Y, Zhang Z, Zhang N, et al. 2017. New bromohexahydroindanone useful in preparation of bactericide for bactericidal composition, tobacco flower leaf antiviral agent for antiviral composition, plant activator and pesticide. Patent. [Google Scholar]
  • FAO. 2018. Faostat: Crop production. yearly. FAO website: FAO. [Google Scholar]
  • Frazão LA, Paustian K, Pellegrino Cerri CE, Cerri CC. 2013. Soil carbon stocks and changes after oil palm introduction in the Brazilian Amazon. Global Change Biology Bioenergy 5: 384–390. https://doi.org/10.1111/j.1757-1707.2012.01196.x. [Google Scholar]
  • Furumo PR, Aide TM. 2017. Characterizing commercial oil palm expansion in Latin America: land use change and trade. Environmental Research Letters 12: 024008. https://doi.org/10.1088/1748-9326/aa5892. [Google Scholar]
  • Gonzalez-Salazar MA, Venturini M, Poganietz WR, Finkenrath M, Leal MRLV. 2017. Combining an accelerated deployment of bioenergy and land use strategies: Review and insights for a post-conflict scenario in Colombia. Renewable and Sustainable Energy Reviews 73: 159–177. https://doi.org/10.1016/j.rser.2017.01.082. [Google Scholar]
  • Hoffmann MP, Donough CR, Cook SE, Fisher MJ, Lim CH, Lim YL, et al. 2017. Yield gap analysis in oil palm: Framework development and application in commercial operations in Southeast Asia. Agricultural Systems 151: 12–19. https://doi.org/10.1016/j.agsy.2016.11.005. [Google Scholar]
  • Hood WW, Wilson CS. 2001. The literature of bibliometrics, scientometrics, and informetrics. Scientometrics 52: 291–314. https://doi.org/10.1023/A:1017919924342. [Google Scholar]
  • Irias-Mata A, Stuetz W, Sus N, Hammann S, Gralla K, Cordero-Solano A, et. al. 2017. Tocopherols, tocomonoenols, and tocotrienols in oils of costa rican palm fruits: A comparison between six varieties and chemical versus mechanical extraction. Journal of Agricultural and Food Chemistry 65: 7476–7482. https://doi.org/10.1021/acs.jafc.7b02230. [Google Scholar]
  • Knowlton JL, Phifer CC, Cerqueira PV, Barro FDC, Oliveira SL, Fiser CM, et al. 2017. Oil palm plantations affect movement behavior of a key member of mixed-species flocks of forest birds in Amazonia, Brazil. Tropical Conservation Science 10: 1–10. https://doi.org/10.1177/1940082917692800. [Google Scholar]
  • Lavelle P, Rodriguez N, Arguello O, Bernal J, Botero C, Chaparro P, et al. 2014. Soil ecosystem services and land use in the rapidly changing Orinoco River Basin of Colombia. Agriculture Ecosystems and Environment 185: 106–117. https://doi.org/10.1016/j.agee.2013.12.020. [Google Scholar]
  • Lin HW, Jin Y, Giglio L, Foley JA, Randerson JT. 2012. Evaluating greenhouse gas emissions inventories for agricultural burning using satellite observations of active fires. Ecological Applications 22: 1345–1364. https://doi.org/10.1890/10-2362.1. [Google Scholar]
  • Moreno-Caicedo LP, Bastidas-Pérez SE. 2017. Morphological characterization of the American oil palm collection Elaeis oleifera (Kunth) Cortés. Acta Agronómica 66: 135–140. https://doi.org/10.15446/acag.v66n1.53819. [Google Scholar]
  • Murugesan P, Aswathy GM, Kumar KS, Masilamani P, Kumar V, Ravi V. 2017. Oil palm (Elaeis guineensis) genetic resources for abiotic stress tolerance: A review. Indian Journal of Agricultural Sciences 87: 571–579. [Google Scholar]
  • Murphy DJ. 2014. The future of oil palm as a major global crop: opportunities and challenges. Journal of Oil Palm Research 26: 1–24. [Google Scholar]
  • Ng SB, Ng VTD, Bock NS, Dip VNT. 2017. Method for processing oil palm fresh fruit bunches, involves separating loosened fruits from fresh fruit bunch and cleaning separated fruits prior to subsequent processing. Patent. [Google Scholar]
  • Ong AL, Kwong QB, Teh CK, Mohamed M, Chew FT, Appleton DR, et al. 2017. Predicting palm oil yield of test oil palm plant, comprises determining first single nucleotide polymorphism genotype of test oil palm plant from a sample, comparing to corresponding first reference SNP genotype, and predicting oil yield. Patent. [Google Scholar]
  • Otero-Colina G, Gonzalez-Gomez R, Martinez-Bolanos L, Otero-Prevost LG, Lopez-Buenfil JA, Escobedo-Graciamedrano RM. 2016. Infestation of Raoiella indica Hirst (Trombidiformes: Tenuipalpidae) on host plants of high socio-economic importance for tropical America. Neotropical Entomology 45: 300–309. https://doi.org/10.1007/s13744-016-0368-z. [Google Scholar]
  • Pare G, Trudel MC, Jaana M, Kitsiou S. 2015. Synthesizing information systems knowledge: A typology of literature reviews. Information and Management 52: 183–199. https://doi.org/10.1016/j.im.2014.08.008. [Google Scholar]
  • Padfield R, Hansen S, Davies ZG, Ehrensperger A, Slade EM, Evers S, et al. 2019. Co-producing a research agenda for sustainable palm oil. Frontiers in Forests and Global Change 2(13). https://doi.org/10.3389/ffgc.2019.00013. [CrossRef] [Google Scholar]
  • Rivera Mendez YD, Moreno Chacon L, Jarry Bayona C, Mauricio Romero H. 2012. Physiological response of oil palm interspecific hybrids (Elaeis oleifera HBK Cortes versus Elaeis guineensis Jacq.) to water deficit. Brazilian Journal of Plant Physiology 24: 273–280. https://doi.org/10.1590/S1677-04202012000400006. [Google Scholar]
  • SAGARPA. 2017. Palma de aceite mexicana. CDMX: Secretaría de Agriculura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA), 16 p. [Google Scholar]
  • Sandoval-Garcia AM, Reyes Altamirano-Cardenas J, Aguilar-Avila J, Garcia-Muniz JG. 2016. Chemical characterization of oil obtained by homemade methods from three african palm varieties (Elaeis guineensis Jacq.). Revista Fitotecnia Mexicana 39: 317–322. https://doi.org/10.35196/rfm.2016.3.317-322. [Google Scholar]
  • Scherm H, Thomas CS, Garrett KA, Olsen JM. 2014. Meta-analysis and other approaches for synthesizing structured and unstructured data in plant pathology. Annual Review of Phytopathology 52: 453–476. https://doi.org/10.1146/annurev-phyto-102313-050214. [Google Scholar]
  • SIAP. 2019. Cierre agricola municipal 1990–2018. In: SIAP-SAGARPA (ed.) Estadística de Producción Agrícola. Ciudad de Mexico. [Google Scholar]
  • Sousa AS, Santos MGM, Pelacani CR, Santos FDAR. 2016. Testing culture media for pollen germination of Elaeis guineensis Jacq. (oil palm, Arecaceae). Botanical Journal of the Linnean Society 182: 536–542. https://doi.org/10.1111/boj.12404. [Google Scholar]
  • Woittiez LS, Van Wijk MT, Slingerland M, van Noordwijk M, Giller KE. 2017. Yield gaps in oil palm: A quantitative review of contributing factors. European Journal of Agronomy 83: 57–77. https://doi.org/10.1016/j.eja.2016.11.002. [Google Scholar]
  • Wyborn C, Louder E, Harrison J, Montambault J, Montana J, Ryan M, et al. 2018. Understanding the impacts of research synthesis. Environmental Science and Policy 86: 72–84. https://doi.org/10.1016/j.envsci.2018.04.013. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.