Open Access
Review
Issue |
Cah. Agric.
Volume 32, 2023
|
|
---|---|---|
Article Number | 23 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/cagri/2023016 | |
Published online | 01 August 2023 |
- Aubert PM, Schwoob MH, Poux X. 2019. Agroecology and carbon neutrality in Europe by 2050: What are the issues? Findings from the TYFA modelling exercise. Study 2: 52. [Google Scholar]
- Balkovič J, Skalský R, Folberth C, Khabarov N, Schmid E, Madaras M, et al. 2018. Impacts and uncertainties of +2 °C of climate change and soil degradation on European crop calorie supply. Earth’s Future 6(3): 373–395. https://doi.org/10.1002/2017EF000629. [CrossRef] [Google Scholar]
- Baudry J, Lelong H, Adriouch S, Julia C, Allès B, Hercberg S, et al. 2017. Association between organic food consumption and metabolic syndrome: Cross-sectional results from the NutriNet-Santé study. European Journal of Nutrition 57: 2477–2488. https://doi.org/10.1007/s00394-017-1520-1. [Google Scholar]
- Bennett AJ, Bending GD, Chandler D, Hilton S, Mills P. 2012. Meeting the demand for crop production: The challenge of yield decline in crops grown in short rotations. Biological Reviews of the Cambridge Philosophical Society 87(1): 52–71. https://doi.org/10.1111/j.1469-185X.2011.00184.x. [CrossRef] [PubMed] [Google Scholar]
- Benton TG. 2019. Using scenario analyses to address the future of food. EFSA Journal 17(S1): e170703. https://doi.org/10.2903/j.efsa.2019.e170703. [CrossRef] [Google Scholar]
- Bertin J. 1970. « La graphique ». Communications 15: 955–964. https://doi.org/10.3406/comm.1970.1221. [Google Scholar]
- Billen G, Aguilera E, Einarsson R, Garnier J, Gingrich S, Grizzetti B, et al. 2021. Perspective reshaping the European agro-food system and closing its nitrogen cycle: The potential of combining dietary change, agroecology, and circularity. One Earth 4(6): 839–850. https://doi.org/10.1016/j.oneear.2021.05.008. [CrossRef] [Google Scholar]
- Campbell BM, Beare DJ, Bennett EM, Hall-Spencer JM, Ingram JS, Jaramillo F, et al. 2017. Agriculture production as a major driver of the earth system exceeding planetary boundaries. Ecology & Society 22(4): 8. https://doi.org/10.5751/ES-09595-220408. [CrossRef] [Google Scholar]
- Cordell D, Drangert JO, White S. 2009. The story of phosphorus: Global food security and food for thought. Global Environmental Change 19(2): 292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009. [Google Scholar]
- Couturier C, Aubert PM, Duru M. 2021. Quels systèmes alimentaires durables demain ? Analyse comparée de 16 scénarios compatibles avec les objectifs de neutralité climatique, 62 p. https://librairie.ademe.fr/. [Google Scholar]
- D’Amato D, Bartkowski B, Droste N. 2020. Reviewing the interface of bioeconomy and ecosystem service research. Ambio 49(12): 1878–1896. https://doi.org/10.1007/s13280-020-01374-0. [CrossRef] [PubMed] [Google Scholar]
- Duru M, Therond O, Martin G, Martin-Clouaire R, Magne MA, Justes E, et al. 2015. How to implement biodiversity-based agriculture to enhance ecosystem services: A review. Agronomy for Sustainable Development 35: 1259–1281. https://doi.org/10.1007/s13593-015-0306-1. [CrossRef] [Google Scholar]
- Duru M, Le Bras C, Grillot M. 2021. Une approche holistique de l’élevage, au cœur des enjeux de santé animale, humaine et environnementale. Cahiers Agricultures 30: 26. https://doi.org/10.1051/cagri/2021013. [CrossRef] [EDP Sciences] [Google Scholar]
- Duru M, Sarthou JP, Therond O. 2022. L’agriculture régénératrice : summum de l’agroécologie ou greenwashing ? Cahiers Agricultures 31: 17. https://doi.org/10.1051/cagri/2022014. [CrossRef] [EDP Sciences] [Google Scholar]
- ECA. 2021. https://www.eca.europa.eu/fr/Pages/NewsItem.aspx?nid=15519. [Google Scholar]
- EC. Europa. 2018. https://ec.europa.eu/knowledge4policy/publication/depth-analysis-support-com2018-773-clean-planet-all-european-strategic-long-term-vision_en. [Google Scholar]
- FAO. 2018. https://www.fao.org/agroecology/database/detail/fr/c/1133519/. [Google Scholar]
- FAO. http://www.fao.org/faostat/fr/ (dern. consult. en décembre 2022). [Google Scholar]
- Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB, et al. 2010. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology 11(2): 97–105. https://doi.org/10.1016/j.baae.2009.12.001. [CrossRef] [Google Scholar]
- Hajian CSS, Sedighi M. 2022. A critical survey of Bioenergy with Carbon Capture and Storage (BECCS). In: Synergy Development in Renewables Assisted Multi-carrier Systems. Cham (Switzerland): Springer International Publishing, pp. 225–278. https://doi.org/10.1007/978-3-030-90720-4_10. [Google Scholar]
- Hassan SS, Williams GA, Jaiswal AK. 2019. Moving towards the second generation of lignocellulosic biorefineries in the EU: Drivers, challenges, and opportunities. Renewable and Sustainable Energy Reviews 101: 590–599. https://doi.org/10.1016/j.rser.2018.11.041. [CrossRef] [Google Scholar]
- Hausknost D, Schriefl E, Lauk C, Kalt G. 2017. A transition to which bioeconomy? An exploration of diverging techno-political choices. Sustainability 9(4): 669. https://doi.org/10.3390/su9040669. [CrossRef] [Google Scholar]
- Hijazi O, Munro S, Zerhusen B, Effenberger M. 2016. Review of life cycle assessment for biogas production in Europe. Renewable and Sustainable Energy Reviews 54: 1291–1300. https://doi.org/10.1016/j.rser.2015.10.013. [CrossRef] [Google Scholar]
- Kesse-Guyot E, Fouillet H, Baudry J, Dussiot A, Langevin B, Allès B, et al. 2021. Science of the total environment halving food-related greenhouse gas emissions can be achieved by redistributing meat consumption: Progressive optimization results of the NutriNet-Santé cohort. Science of the Total Environment 789: 147901. https://doi.org/10.1016/j.scitotenv.2021.147901. [CrossRef] [Google Scholar]
- Klerkx L, Begemann S. 2020. Supporting food systems transformation: The what, why, who, where and how of mission-oriented agricultural innovation systems. Agricultural Systems 184: 102901. https://doi.org/10.1016/j.agsy.2020.102901. [CrossRef] [Google Scholar]
- Kluts I, Wicke B, Leemans R, Faaij A. 2017. Sustainability constraints in determining European bioenergy potential: A review of existing studies and steps forward. Renewable and Sustainable Energy Reviews 69: 719–734. https://doi.org/10.1016/j.rser.2016.11.036. [CrossRef] [Google Scholar]
- Launay C, Constantin J, Chlebowski F, Houot S, Graux AI, Klumpp K, et al. 2021. Estimating the carbon storage potential and greenhouse gas emissions of French arable cropland using high-resolution modeling. Global Change Biology 27(8): 1645–1661. https://doi.org/10.1111/gcb.15512. [CrossRef] [PubMed] [Google Scholar]
- Launay C, Houot S, Frédéric S, Girault R, Levavasseur F, Marsac S, et al. 2022. Incorporating energy cover crops for biogas production into agricultural systems: Benefits and environmental impacts. Agronomy for Sustainable Development 42: 77. https://doi.org/10.1007/s13593-022-00811-6. [CrossRef] [Google Scholar]
- Lee H, Brown C, Seo B, Holman I, Audsley E, Cojocaru G, et al. 2019. Implementing land-based mitigation to achieve the Paris Agreement in Europe requires food system transformation. Environmental Research Letters 14(10): 104009. https://doi.org/10.1088/1748-9326/ab3744. [CrossRef] [Google Scholar]
- Lorant A, Allen B. 2019. Institute for European Environnemental Policy (IEEP). https://ieep.eu/publications/net-zero-agriculture-in-2050-how-to-get-there. [Google Scholar]
- Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L. 2016. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Frontiers in Public Health 4: 148. https://doi.org/10.3389/fpubh.2016.00148. [CrossRef] [PubMed] [Google Scholar]
- Pellerin S, Bamière L, Savini I, Pardon L. 2013. Quelle contribution de l’agriculture française à la réduction des émissions de gaz à effet de serre ? Potentiel d’atténuation et coût de dix actions techniques. Synthèse du rapport d’étude. France : INRA, 96 p. https://www.inrae.fr/sites/default/files/pdf/4ce01662146c72f5de3ed9130c30c5dd.pdf. [Google Scholar]
- Pellerin S, Bamière L, Launay C, Martin R, Schiavo M, Angers D, et al. 2019. Stocker du carbone dans les sols français. Quel potentiel au regard de l’objectif 4 pour 1000 et à quel coût ? Synthèse du rapport d’étude. France : INRA, 114 p. https://www.inrae.fr/actualites/stocker-4-1000-carbone-sols-potentiel-france. [Google Scholar]
- Poore J, Nemecek T. 2018. Reducing food’s environmental impacts through producers and consumers. Science 992(6392): 987–992. https://doi.org/10.1126/SCIENCE.AAQ0216. [Google Scholar]
- Powles SB, Yu Q. 2010. Evolution in action: Plants resistant to herbicides. Annual review of Plant Biology 61: 317–347. https://doi.org/10.1146/annurev-arplant-042809-112119. [CrossRef] [PubMed] [Google Scholar]
- Rusch A, Chaplin-Kramer R, Gardiner MM, Hawro V, Holland J, Landis D, et al. 2016. Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agriculture, Ecosystems & Environment 221: 198–204. https://doi.org/10.1016/j.agee.2016.01.039. [CrossRef] [Google Scholar]
- Smith LG, Kirk GJ, Jones PJ, Williams AG. 2019. The greenhouse gas impacts of converting food production in England and Wales to organic methods. Nature Communications 10(1): 1–10. https://doi.org/10.1038/s41467-019-12622-7. [Google Scholar]
- Solagro. 2017. https://afterres2050.solagro.org. [Google Scholar]
- Solagro. 2019. https://solagro.org/nos-domaines-d-intervention/methanisation. [Google Scholar]
- Springmann M, Clark M, Mason-D’Croz D, Wiebe K, Bodirsky BL, Lassaletta L, et al. 2018. Options for keeping the food system within environmental limits. Nature 562(7728): 519–525. https://doi.org/10.1038/s41586-018-0594-0. [CrossRef] [PubMed] [Google Scholar]
- Strapasson A, Woods J, Meessen J, Mwabonje O, Baudry G, Mbuk K. 2020. EU land use futures: Modelling food, bioenergy and carbon dynamics. Energy Strategy Reviews: 100545. https://doi.org/10.1016/j.esr.2020.100545. [CrossRef] [Google Scholar]
- Tamburini G, Bommarco R, Wanger TC, Kremen C, Van Der Heijden MG, Liebman M, et al. 2020. Agricultural diversification promotes multiple ecosystem services without compromising yield. Science Advances 6(45): eaba1715. https://doi.org/10.1126/sciadv.aba1715. [CrossRef] [PubMed] [Google Scholar]
- Therond O, Duru M. 2019. Agriculture et biodiversité : les services écosystémiques, une voie de réconciliation ? Innovations agronomiques 75: 29–47. [Google Scholar]
- Tullo E, Finzi A, Guarino M. 2019. Review: Environmental impact of livestock farming and precision livestock farming as a mitigation strategy. Science of the Total Environment 650: 2751–2760. https://doi.org/10.1016/j.scitotenv.2018.10.018. [CrossRef] [Google Scholar]
- van Duren I, Voinov A, Arodudu O, Firrisa MT. 2015. Where to produce rapeseed biodiesel and why? Mapping European rapeseed energy efficiency. Renewable Energy 74: 49–59. https://doi.org/10.1016/j.renene.2014.07.016. [CrossRef] [Google Scholar]
- van Zanten HHE, Mollenhorst H, Klootwijk CW, van Middelaar CE, de Boer IJM. 2016. Global food supply: Land use efficiency of livestock systems. International Journal of Life Cycle Assessment 21(5): 747–758. https://doi.org/10.1007/s11367-015-0944-1. [CrossRef] [Google Scholar]
- Weishaupt A, Ekardt F, Garske B, Stubenrauch J, Wieding J. 2020. Land use, livestock, quantity governance, and economic instruments-sustainability beyond big livestock herds and fossil fuels. Sustainability 12(5): 2053. https://doi.org/10.3390/su12052053. [CrossRef] [Google Scholar]
- Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, et al. 2019. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. The Lancet 393(10170): 447–492. https://doi.org/10.1016/S0140-6736(18)31788-4. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.