Open Access
| Issue |
Cah. Agric.
Volume 34, 2025
|
|
|---|---|---|
| Article Number | 33 | |
| Number of page(s) | 11 | |
| DOI | https://doi.org/10.1051/cagri/2025033 | |
| Published online | 27 October 2025 | |
- Altieri MA. 1999. The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems & Environment 74: 19–31. https://doi.org/10.1016/S0167-8809(99)00028-6. [CrossRef] [Google Scholar]
- Bélières JF, Randriamitantsoa D, Randrianirina H, Ralisoa N, Crespin-Boucaud A. 2020. Étude de la chaîne de valeur pomme de terre dans les régions d’Analamanga, Itasy et Vakinankaratra (Madagascar). Partie 1. Importance de la culture pour les exploitations agricoles et rentabilité de la production de plants de semence et de consommation. Rapport d’expertise. Montpellier (France): CIRAD, 104 p. https://agritrop.cirad.fr/596147/. [Google Scholar]
- Bélières JF, Sunassee S, Jouen E, Aujayeb V, Lutchoomun S. 2023. Les semences dans la filière pomme de terre à Maurice. Réduit (Ile Maurice): FAREI-CIRAD, 70 p. https://agritrop.cirad.fr/605141/. [Google Scholar]
- Bouchtaoui EM, Haouas A, Dababat AA, Lahlali R, Benali A, Fahr M, et al. 2024. Exploring mechanisms of compost-mediated suppression of plant pathogens: A critical review. Applied Soil Ecology 203: 105644. https://doi.org/10.1016/j.apsoil.2024.105644. [Google Scholar]
- Carter MR, Sanderson JB, MacLeod JA. 2004. Influence of compost on the physical properties and organic matter fractions of a fine sandy loam throughout the cycle of a potato rotation. Canadian Journal of Soil Science 84: 211–218. https://doi.org/10.4141/S03-058. [Google Scholar]
- Cellier G, Prior P. 2010. Deciphering phenotypic diversity of Ralstonia solanacearum strains pathogenic to potato. Phytopathology 100(11): 1250–1261. https://doi.org/10.1094/PHYTO-02-10-0059. [Google Scholar]
- Champoiseau PG, Jones JB, Allen C. 2009. Ralstonia solanacearum race 3 biovar 2 causes tropical losses and temperate anxieties. Plant Health Progress 10(1): 35. https://doi.org/10.1094/PHP-2009-0313-01-RV. [Google Scholar]
- Champoiseau PG, Momol TM. 2009. Bacterial wilt of tomato. USDA-NRI Project. Gainesville (USA): University of Florida. https://www.researchgate.net/profile/M-Momol/publication/267829100_Bacterial_Wilt_of_Tomato/links/54997df10cf2d6581ab1493b/Bacterial-Wilt-of-Tomato.pdf. [Google Scholar]
- Ciampi L, Sequeira L, French ER. 1980. Latent infection of potato tubers by Pseudomonas solanacearum. American Potato Journal 57: 377–386. https://doi.org/10.1007/BF02854329. [Google Scholar]
- CIP. 2018. Potato: A global food security crop. International Potato Center. Annual Report 2018. [2024/09/29]. https://cipotato.org/annualreport2018/. [Google Scholar]
- Denny T. 2006. Plant pathogenic Ralstonia species. In Gnanamanickam SS, ed. Plant-Associated Bacteria. Dordrecht (Netherlands): Springer, pp. 573–644. https://doi.org/10.1007/978-1-4020-4538-7_16. [Google Scholar]
- DGM. 2024. Données météorologiques de Madagascar. Direction Générale de la Météorologie. [2024/06/24]. https://worldweather.wmo.int/fr/country.html?countryCode=4. [Google Scholar]
- Ding J, Wang N, Liu P, Liu B, Zhu Y, Mao J, et al. 2023. Bacterial wilt suppressive composts: Significance of rhizosphere microbiome. Waste Management 169: 179–185. https://doi.org/10.1016/j.wasman.2023.07.011. [Google Scholar]
- FAOSTAT. 2023. Global food and agriculture statistics. Food and Agriculture Organization. [2024/06/24]. https://www.fao.org/faostat/en/#data. [Google Scholar]
- Hagman JE, Mårtensson A, Grandin U. 2009. Cultivation practices and potato cultivars suitable for organic potato production. Potato Research 52(4): 319–330. https://doi.org/10.1007/s11540-009-9128-3. [Google Scholar]
- Hayward AC. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology 29: 65–87. https://doi.org/10.1146/annurev.py.29.090191.000433. [Google Scholar]
- INSTAT. 2013. Monographies des 22 régions de Madagascar. Institut National de la Statistique de Madagascar. [2024/06/24]. https://www.instat.mg/. [Google Scholar]
- Kimpinski J, Gallant CE, Henry R, Macleod JA, Sanderson JB, Sturz AV. 2003. Effect of compost and manure soil amendments on nematodes and on yields of potato and barley: A 7-year study. Journal of nematology 35(3): 289–293. [Google Scholar]
- Larkin RP, Tavantzis S. 2013. Use of Biocontrol Organisms and Compost Amendments for Improved Control of Soilborne Diseases and Increased Potato Production. American Journal of Potato Research 90: 261–270. https://doi.org/10.1007/s12230-013-9301-8. [Google Scholar]
- Lemaga B, Kanzikwera R, Kakuhenzire R, Hakiza JJ, Manzi G. 2001a. The effect of crop rotation on bacterial wilt incidence and potato tuber yield. African Crop Science Journal 9(1): 257–266. https://doi.org/10.4314/acsj.v9i1.27647. [Google Scholar]
- Lemaga B, Siriri D, Ebanyat P. 2001b. Effect of soil amendments on bacterial wilt incidence and yield of potatoes in southwestern Uganda. African Crop Science Journal 9(1): 267–278. https://doi.org/10.4314/acsj.v9i1.27648. [Google Scholar]
- Lowe-Power TM, Avalos J, Bai Y, Munoz MC, Chipman K, Elmgreen VN, et al. 2020. A meta-analysis of the known global distribution and host range of the Ralstonia species complex. Biorxiv Preprint-07. https://doi.org/10.1101/2020.07.13.189936. [Google Scholar]
- Machmud M. 1993. Control of peanut bacterial wilt through crop rotation. In: Hartman GL, Hayward AC, eds. Bacterial wilt. Proceedings of an international conference held at Kaohsiung, Taiwan. ACIAR Proceedings 45, pp. 221–224. https://www.aciar.gov.au/sites/default/files/legacy/node/2182/pr45_pdf_90777.pdf. [Google Scholar]
- Mdoda L, Obi A, Tamako N, Naidoo D, Baloyi R. 2023. Resource use efficiency of potato production among smallholder irrigated farmers in the Eastern Cape Province of South Africa. Sustainability 15: 14457. https://doi.org/10.3390/su151914457. [Google Scholar]
- Messiha NAS, Elhalag KMA, Balabel NM, Matar HA, Farag SMA, Hagag MH, et al. 2020. Efficiency of organic manuring and mineral fertilization regimes in potato brown rot suppression and soil microbial biodiversity under field conditions. Archives of Phytopathology and Plant Protection 54(9-10): 534–556. https://doi.org/10.1080/03235408.2020.1844523. [Google Scholar]
- Milling A, Meng F, Denny TP, Allen C. 2009. Interactions with hosts at cool temperatures, not cold tolerance, explain the unique epidemiology of Ralstonia solanacearum race 3 biovar 2. Phytopathology 99(10): 1127–1134. https://doi.org/10.1094/PHYTO-99-10-1127. [Google Scholar]
- Mirabelli C, Colla G, Fiorillo A, Cardarelli M, Rouphael Y, Paolini R. 2005. The effect of mechanical weed control technique and irrigation method on yield, tuber quality and weed suppression in organic potato. Acta Horticulturae 684: 127–133. https://doi.org/10.17660/ActaHortic.2005.684.17. [Google Scholar]
- Palti J. 1981. Major cultural practices and their effect on crop disease. In: Palti J, ed. Cultural practices and infectious crop diseases. Heidelberg (Germany): Advanced series in agricultural sciences 9, Springer, pp. 73–189. https://doi.org/10.1007/978-3-642-68266-7_3. [Google Scholar]
- Randriantsalama AR, Randrianaivoarivony JM, Ramalanjaona VI. 2014. L’utilisation de la lutte chimique et de la résistance variétale contre le mildiou de la pomme de terre à Madagascar. African Crop Science Journal 22: 959–968. https://www.ajol.info/index.php/acsj/article/view/108543. [Google Scholar]
- Rasamiravaka T, Rajaonarivelo JP, Rabemanantsoa C, El Jaziri M, Andrianarisoa B, Duez P. 2017. Malagasy traditional treatments for food crops: A tool to control potato bacterial diseases? Crop Protection 102: 49–55. https://doi.org/10.1016/j.cropro.2017.08.011. [Google Scholar]
- Rasamiravaka T, Raveloson PA, Rajaonarivelo JP, Rabemanantsoa C, Andrianarisoa B, Duez P, et al. 2018. Malagasy traditional treatments of infectious plant diseases exert anti-virulence activities against Pseudomonas aeruginosa and Ralstonia solanacearum. Journal of Microbiology, Biotechnology and Food Sciences 7(4): 377–382. https://doi.org/10.15414/jmbfs.2018.7.4.377-382. [CrossRef] [Google Scholar]
- Ratnadass A, Avelino J, Fernandes P, Letourmy P, Babin R, Deberdt P, et al. 2021. Synergies and tradeoffs in natural regulation of crop pests and diseases under plant species diversification. Crop Protection 1(146): 105658. https://doi.org/10.1016/j.cropro.2021.105658. [Google Scholar]
- Ravelomanantsoa S. 2016. Biologie des populations du complexe d’espèces Ralstonia solanacearum appliquée à l’épidémiologie de la bactériose vasculaire de la pomme de terre à Madagascar. Thèse, Université de la Réunion, Université d’Antananarivo. Département de biologie et écologie végétales, 239 p. https://tel.archives-ouvertes.fr/tel-01432701v2. [Google Scholar]
- Ravelomanantsoa S, Rakotoarisoa J. 2017. Épidémiosurveillance régionale et biocontrôle des bioagresseurs majeurs des filières végétales. Composante 4 : épidémiosurveillance régionale. Action 1 : maladies et ravageurs de la pomme de terre. Rapport d’activités – phase I. Antananarivo (Madagascar), 54 p. https://www.fofifa.mg/. [Google Scholar]
- Ravelomanantsoa S, Verniere C, Rieux A, Costet L, Chiroleu F, Arribat S, et al. 2018. Molecular epidemiology of bacterial wilt in the Madagascar Highlands caused by Andean (Phylotype IIB-1) and African (Phylotype III) brown rot strains of the Ralstonia solanacearum Species Complex. Frontiers in Plant Science 8: 2258. https://doi.org/10.3389/fpls.2017.02258. [Google Scholar]
- Razafimahatratra HM, Bélières JF, Raharimalala S, Randriamihary FS, Autfray P, Razanakoto OR, et al. 2020. Production et acquisition de fumure organique pour la gestion de la fertilité des sols par les exploitations agricoles du Moyen-Ouest de la région Vakinankaratra et de la zone Est de la région d’Itasy, Madagascar. Journal de l’Agroécologie 9: 34. https://agritrop.cirad.fr/595706/1/2020_JAE09_Razafimahatratra%20et%20al%20Fumure%20Organique.pdf. [Google Scholar]
- Singh TB, Ali A, Prasad M, Yadav A, Shrivastav P, Goyal D, et al. 2020. Role of organic fertilizers in improving soil fertility. In Naeem M, Ansari A, Gill S, eds. Contaminants in Agriculture. Cham (Switzerland): Springer, pp. 61–77. https://doi.org/10.1007/978-3-030-41552-5_3. [Google Scholar]
- Symonds MRE, Moussalli A. 2011. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behavioral Ecology and Sociobiology 65: 13–21. https://doi.org/10.1007/s00265-010-1037-6. [Google Scholar]
- Virtanen E, Seppänen M. 2014. Effects of haulm killing on seed potato quality. Journal of Agricultural Science 6(3): 168–175. https://doi.org/10.5539/jas.v6n3p168. [Google Scholar]
- Workayehu M, Enyew M, Abitew NW, Kakuhenzire R. 2022. Potato bacterial wilt management for quality seed potato production in Ethiopia: A training manual for agricultural extension experts, development agents, farmers’ seed grower cooperatives and decentralized seed multipliers. Lima (Peru): International Potato Center, 34 p. [Google Scholar]
- Yuliar, Nion YA, Toyota K. 2015. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes and Environments 30(1): 1–11. https://doi.org/10.1264/jsme2.ME14144. [Google Scholar]
- Zheng F, Liu X, Ding W, Song X, Li S, Wu X. 2023. Positive effects of crop rotation on soil aggregation and associated organic carbon are mainly controlled by climate and initial soil carbon content: A meta-analysis. Agriculture, Ecosystems & Environment 355: 108600. https://doi.org/10.1016/j.agee.2023.108600. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
