Open Access
Review
Numéro |
Cah. Agric.
Volume 32, 2023
|
|
---|---|---|
Numéro d'article | 8 | |
Nombre de pages | 14 | |
DOI | https://doi.org/10.1051/cagri/2023001 | |
Publié en ligne | 23 février 2023 |
- Åkerman M, Humalisto N, Pitzenc S. 2020. Material politics in the circular economy: the complicated journey from manure surplus to resource. Geoforum 116: 73–80. https://doi.org/10.1016/j.geoforum.2020.07.013. [CrossRef] [Google Scholar]
- Alvarez S, Rufino MC, Vayssières J, Salgado P, Tittonell P, Tillard E, et al. 2014. Whole-farm nitrogen cycling and intensification of crop-livestock systems in the highlands of Madagascar: an application of network analysis. Agricultural Systems 126: 25–37. https://doi.org/10.1016/j.agsy.2013.03.005 [CrossRef] [Google Scholar]
- Anglade J, Billen G, Garnier J, Makridis T, Puech T, Tittel C. 2015. Nitrogen soil surface balance of organic vs conventional cash crop farming in the Seine watershed. Agricultural Systems 139: 82–92. https://doi.org/10.1016/j.agsy.2015.06.006 [CrossRef] [Google Scholar]
- Aubron C, Vigne M, Philippon O, Lucas C, Lesens P, Upton S, et al. 2021. Nitrogen metabolism of an Indian village based on the comparative agriculture approach: how characterizing social diversity was essential for understanding crop-livestock integration. Agricultural Systems 193: 103218. https://doi.org/10.1016/j.agsy.2021.103218 [CrossRef] [Google Scholar]
- Bahers JB, Giacchè J. 2018. Échelles territoriales et politiques du métabolisme urbain : la structuration des filières de biodéchets et l’intégration de l’agriculture urbaine à Rennes. VertigO 31. https://doi.org/10.4000/vertigo.21609 [Google Scholar]
- Bahers JB, Barles S, Durand M. 2019. Urban metabolism of intermediate cities: the material flow analysis, hinterlands and the logistics-hub function of Rennes and Le Mans (France). Journal of Industrial Ecology 23(3): 686–698. https://doi.org/10.1111/jiec.12778 [CrossRef] [Google Scholar]
- Bahers JB, Higuera P, Ventura A, Antheaume N. 2020. The “Metal-Energy-Construction Mineral” nexus in the island metabolism: the case of the extractive economy of New Caledonia. Sustainability 12(6): 2191. https://doi.org/10.3390/su12062191. [CrossRef] [Google Scholar]
- Bahers JB, Singh S, Durand M. 2022. Analyzing socio-metabolic vulnerability: evidence from the Comoros Archipelago. Anthropocene Science 1: 164–178. https://doi.org/10.1007/s44177-022-00017-1. [CrossRef] [Google Scholar]
- Barataud F, Billen G, Garnier J, Mignolet C, Petit C, de la Haye Saint Hilaire L. 2021. TORSADES : la reconnexion agriculture-alimentation à l’échelle de trois territoires. PIREN-Seine phase 8 – Rapport 2021, 12 p. [Google Scholar]
- Barbier C, Couturier C, Pourouchottamin P, Cayla JM, Silvestre M, Pharabod I. 2019. L’empreinte énergétique et carbone de l’alimentation en France – de la production à la consommation. Synthèse Ademe, 24 p. [Google Scholar]
- Barbieri P, MacDonald GK, Bernard de Raymond A, Nesme T. 2021. Food system resilience to phosphorus shortages on a telecoupled planet. Nature Sustainability 5: 114–122. https://doi.org/10.1038/s41893-021-00816-1. [CrossRef] [Google Scholar]
- Barles S. 2009. Urban metabolism of Paris and its region. Journal of Industrial Ecology 13(6): 898–913. https://doi.org/10.1111/j.1530-9290.2009.00169.x [Google Scholar]
- Barles S. 2010. Society, energy and materials: the contribution of urban metabolism studies to sustainable urban development issues. Journal of Environmental Planning and Management 53(4): 439–455. https://doi.org/10.1080/09640561003703772. [CrossRef] [Google Scholar]
- Baysse-Lainé A, Perrin C. 2017. Les espaces agricoles des circuits de proximité : une lecture critique de la relocalisation de l’approvisionnement alimentaire de Millau. Natures Sciences Sociétés 25(1): 21–35. https://doi.org/10.1051/nss/2017017. [CrossRef] [EDP Sciences] [Google Scholar]
- Bevione M. 2021. L’analyse des interactions entre flux et acteurs pour la compréhension des enjeux socio-écologiques à l’échelle d’un territoire : application à la production du fromage AOP Beaufort dans la vallée de la Maurienne. Thèse. Université Grenoble Alpes, 206 p. [Google Scholar]
- Bijon N, Wassenaar T, Junqua G, Dechesne M. 2020. Définir le système-territoire pour une symbiose territoriale bioéconomique. In: T2020 – Transitions écologiques en transactions et actions, juin 2020, Toulouse, France, pp. 83–84. [Google Scholar]
- Billen G, Barles S, Garnier J, Rouillard J, Benoit P. 2009. The food-print of Paris: long-term reconstruction of the nitrogen flows imported into the city from its rural hinterland. Regional Environmental Change 9(1): 13–24. https://doi.org/10.1007/s10113-008-0051-y [CrossRef] [Google Scholar]
- Billen G, Barles S, Chatzimpiros P, Garnier J. 2012. Grain, meat and vegetables to feed Paris: where did and do they come from? Localising Paris food supply areas from the eighteenth to the twenty-first century. Regional Environmental Change 12: 325–335. https://doi.org/10.1007/s10113-011-0244-7. [CrossRef] [Google Scholar]
- Billen G, Garnier J, Benoît M. 2013. La cascade de l’azote dans les territoires de grande culture du Nord de la France. Cahiers Agricultures 22(4): 272–281. https://doi.org/10.1684/agr.2013.0640. [CrossRef] [Google Scholar]
- Billen G, Lassaletta L, Garnier J. 2014. A biogeochemical view of the global agro-food system: nitrogen flows associated with protein production, consumption and trade. Global Food Security 3(3–4): 209–219. https://doi.org/10.1016/j.gfs.2014.08.003. [CrossRef] [Google Scholar]
- Billen G, Garnier J, Ramarson A, Romero E, Thieu V, Le Noe J, et al. 2017. Scénarios prospectifs du système agro-alimentaire du bassin de la Seine à l’horizon 2040. PIREN-Seine phase VII – rapport 2017. Axe 1. Phase 7. https://archimer.ifremer.fr/doc/00416/52796/. [Google Scholar]
- Billen G, Le Noë J, Garnier J. 2018. Two contrasted future scenarios for the French agro-food system. Science of the Total Environment 637–638: 695–705. https://doi.org/10.1016/j.scitotenv.2018.05.043. [CrossRef] [Google Scholar]
- Billen G, Le Noë J, Anglade J, Garnier J. 2019. Polyculture-élevage ou hyper-spécialisation territoriale ? Deux scénarios prospectifs du système agro-alimentaire français. Innovations Agronomiques 72: 31–44. https://doi.org/10.15454/me8zji. [Google Scholar]
- Billen G, Aguilera E, Einarsson R, Garnier J, Gingrich S, Grizzetti B, et al. 2021. Reshaping the European agro-food system and closing its nitrogen cycle: the potential of combining dietary change, agroecology, and circularity. One Earth 4(6): 839–850. https://doi.org/10.1016/j.oneear.2021.05.008. [CrossRef] [Google Scholar]
- Bognon S. 2014. Les transformations de l’approvisionnement alimentaire dans la métropole parisienne : trajectoire socio-écologique et construction de proximités. Thèse. Université Paris 1–Panthéon-Sorbonne, 412 p. [Google Scholar]
- Bognon S, Marty P. 2015. La question alimentaire dans l’action publique locale. Analyse croisée des trajectoires municipales de Paris et de Brive-la-Gaillarde. VertigO 15(2). https://doi.org/10.4000/vertigo.16401. [Google Scholar]
- Bognon S, Barles S, Billen G, Garnier J. 2018. Approvisionnement alimentaire parisien du XVIIIe au XXIe siècle : les flux et leur gouvernance. Récit d’une trajectoire socioécologique. Natures Sciences Sociétés 26(1): 17–32. https://doi.org/10.1051/nss/2018017. [CrossRef] [EDP Sciences] [Google Scholar]
- Bonaudo T, Piraux M, Gameiro AH. 2021. Analysing intensification, autonomy and efficiencies of livestock production through nitrogen flows: a case study of an emblematic Amazonian territory. Agricultural systems 190: 103072. https://doi.org/10.1016/j.agsy.2021.103072. [CrossRef] [Google Scholar]
- Boros L. 2021. Intégration de matières organiques locales dans les pratiques agricoles d’une diversité de systèmes de production de légumes en contexte périurbain. Mémoire de fin d’études. AgroParisTech, 73 p. [Google Scholar]
- Brun F, Joncoux S, de Gouvello B, Esculier F. 2020. Vers une valorisation des urines humaines : le regard des agriculteurs franciliens. Études Rurales 206: 200–220. https://doi.org/10.4000/etudesrurales.24043. [CrossRef] [Google Scholar]
- Cesaro JD, Duteurtre G, Guilbert S, Zakhia-Rozis N. 2022. Urban food waste: a resource for circular economy between cities and agriculture. In: Thomas A, Alpha A, Barczak A, Zakhia-Rozis N, eds. Sustainable food systems for food security. Need for combination of local and global approaches. Versailles (France): Éditions Quæ, pp. 187–199. [Google Scholar]
- Chatzimpiros P, Barles S. 2010. Nitrogen, land and water inputs in changing cattle farming systems. A historical comparison for France, 19th–21st centuries. Science of the Total Environment 408(20): 4644–4653. https://doi.org/10.1016/j.scitotenv.2010.06.051. [CrossRef] [Google Scholar]
- Chatzimpiros P, Barles S. 2013. Nitrogen food-print: N use related to meat and dairy consumption in France. Biogeosciences 10: 471–481. https://doi.org/10.5194/bg-10-471-2013. [CrossRef] [Google Scholar]
- Chiffoleau Y, Brit AC, Monnier M, Akermann G, Lenormand M, Saucède F. 2020. Coexistence of supply chains in a city’s food supply: a factor for resilience? Review of Agricultural, Food and Environmental Studies 101: 391–414. https://doi.org/10.1007/s41130-020-00120-0. [CrossRef] [Google Scholar]
- Courtonne JY, Alapetite J, Longaretti PY, Dupré D, Prados E. 2015. Downscaling material flow analysis: the case of the cereal supply chain in France. Ecological Economics 118: 67–80. https://doi.org/10.1016/j.ecolecon.2015.07.007. [CrossRef] [Google Scholar]
- Courtonne JY, Longaretti PY, Alapetite J, Dupré D. 2016. Environmental pressures embodied in the French cereals supply chain. Journal of Industrial Ecology 20(3): 423–434. https://doi.org/10.1111/jiec.12431. [CrossRef] [Google Scholar]
- Courtonne JY, Longaretti PY, Dupré D. 2018. Uncertainties of domestic road freight statistics: insights for regional material flow studies. Journal of Industrial Ecology 22(5): 1189–1201. https://doi.org/10.1111/jiec.12651. [CrossRef] [Google Scholar]
- Daviron B. 2019. Biomasse : une histoire de richesse et de puissance. Versailles (France): Éditions Quæ, 392 p. https://doi.org/10.35690/978-2-7592-2983-3. [Google Scholar]
- De Barros I, Blazy JM, Rodrigues GS, Tournebize R, Cinna JP. 2009. Emergy evaluation and economic performance of banana cropping systems in Guadeloupe (French West Indies). Agriculture, Ecosystems & Environment 129: 437–449. https://doi.org/10.1016/j.agee.2008.10.015. [CrossRef] [Google Scholar]
- Debuisson M. 2014. Les modes d’interaction pour une dynamique territoriale soutenable : un apport à l’écologie territoriale. Sciences de l’Homme et Société. Thèse. Université de Technologie de Troyes, 503 p. [Google Scholar]
- Dufour E, Barles S. 2021. L’éviction du compostage des ordures ménagères et la fin de leur recyclage agricole en France et en Île-de-France (1940–1990) : le rôle de la valorisation marchande et de la normalisation technoscientifique. Rapport PIREN-Seine phase 8, 24 p. [Google Scholar]
- Esculier F. 2018. Le système alimentation/excrétion des territoires urbains : régimes et transitions socio-écologiques. Thèse. Université Paris-Est, 534 p. [Google Scholar]
- Esculier F, Le Noë J, Barles S, Billen G, Creno B, Garnier J, et al. 2019. The biogeochemical imprint of human metabolism in Paris Megacity: a regionalized analysis of a water-agro-food system. Journal of Hydrology 573: 1028–1045. https://doi.org/10.1016/j.jhydrol.2018.02.043. [CrossRef] [Google Scholar]
- Esculier F, Barles S. 2021. Past and future trajectories of human excreta management systems: Paris in the nineteenth to twenty-first centuries. In: Flipo N, Labadie P, Lestel L eds. The Seine River Basin. Cham (Switzerland): Springer, pp. 117–140. https://doi.org/10.1007/698_2019_407. [Google Scholar]
- Fernandez-Mena H, Nesme T, Pellerin S. 2016. Towards an agro-industrial ecology: a review of nutrient flowmodelling and assessment tools in agro-food systems at the local scale. Science of the Total Environment 543: 467–479. https://doi.org/10.1016/j.scitotenv.2015.11.032. [CrossRef] [Google Scholar]
- Fernandez-Mena H, Gaudou B, Pellerin S, MacDonald GK, Nesme T. 2019. Flows in Agro-food Networks (FAN): an agent-based model to simulate local agricultural material flows. Agricultural Systems 180: 102718. https://doi.org/10.1016/j.agsy.2019.102718. [Google Scholar]
- Fischer-Kowalski M, Hüttler W. 1999. Society’s metabolism. The intellectual history of materials flow analysis, part II, 1970–1998. Journal of Industrial Ecology 2(4): 107–136. https://doi.org/10.1162/jiec.1998.2.4.107. [CrossRef] [Google Scholar]
- Frugal. 2020. Appréhender les flux alimentaires de l’aire urbaine. Livret de recherche. https://projetfrugal.fr/wp-content/uploads/2020/10/frugal-cahier-acteurs1-flux-off.pdf. [Google Scholar]
- Gabriel A. 2021. Le pluralisme des voies d’écologisation de la gestion des biomasses résiduaires en agriculture : analyse à partir des réseaux métaboliques et étude de cas dans la vallée de la Drôme. Thèse. Université Paris-Saclay, 373 p. [Google Scholar]
- Gabriel A, Madelrieux S, Lescoat P. 2020. A review of socio-economic metabolism representations and their links to action: cases in agri-food studies. Ecological Economics 178: 106765. https://doi.org/10.1016/j.ecolecon.2020.106765. [CrossRef] [Google Scholar]
- Gameiro AH, Bonaudo T, Tichit M. 2019. Nitrogen, phosphorus and potassium accounts in the Brazilian livestock agro-industrial system. Regional Environmental Change 19(3): 893–905. https://doi.org/10.1007/s10113-018-1451-2. [CrossRef] [Google Scholar]
- Garnier J, Anglade, J, Benoît M, Billen G, Puech T, Ramarson A, et al. 2016. Reconnecting crop and cattle farming to reduce nitrogen losses in river water of an intensive agricultural catchment (Seine basin, France): past, present and future. Environmental Science and Policy 63: 76–90. https://doi.org/10.1016/j.envsci.2016.04.019. [CrossRef] [Google Scholar]
- Georgescu-Roegen N. 1971. The entropy law and the economic process. Harvard (USA): Harvard University Press, 469 p. https://doi.org/10.4159harvard.9780674281653. [Google Scholar]
- Georgescu-Roegen N. 1979. La décroissance. Entropie − Écologie − Économie, 2e éd. (1995). Paris (France): Éditions Sang de la terre, 254 p. [Google Scholar]
- Giampietro M, Mayumi K, Ramos-Martin J. 2009. Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM): theoretical concepts and basic rationale. Energy 34: 313–322. https://doi.org/10.1016/j.energy.2008.07.020. [CrossRef] [Google Scholar]
- Grillot M, Guerrin F, Gaudou B, Masse D, Vayssières J. 2018. Multi-level analysis of nutrient cycling within agro-sylvo-pastoral landscapes in West Africa using an agent-based model. Environmental Modelling & Software 107: 267–280. https://doi.org/10.1016/j.envsoft.2018.05.003. [CrossRef] [Google Scholar]
- Grillot M, Ruault JF, Torre A, Bray F, Madelrieux S. 2021. Le proto-métabolisme : approche du fonctionnement bioéconomique d’un territoire agricole. Économie rurale 376: 55–75. https://doi.org/10.4000/economierurale.8908. [CrossRef] [Google Scholar]
- Gonçalves A, Galliano D, Triboulet P. 2021. Eco-innovations towards circular economy: evidence from cases studies of collective methanization in France. European Planning Studies 30(7): 1230–1250. https://doi.org/10.1080/09654313.2021.1902947. [Google Scholar]
- Haas W, Krausmann F, Wiedenhofer D, Lauk C, Mayer A. 2020. Spaceship earth’s odyssey to a circular economy. A century long perspective. Resources, Conservation & Recycling 163. https://doi.org/10.1016/j.resconrec.2020.105076. [CrossRef] [Google Scholar]
- Haberl H, Fischer-Kowalski M, Krausmann F, Winiwarter V, eds. 2016. Social ecology: society-nature relations across time and space. Switzerland: Springer, 672 p. https://doi.org/10.1007/978-3-319-33326-7. [Google Scholar]
- 2019. Contributions of sociometabolic research to sustainability science. Nature Sustainability 2: 173–184. https://doi.org/10.1038/s41893-019-0225-2. [CrossRef] [Google Scholar]
- Harchaoui S. 2019. Modélisation des transitions en agriculture : énergie, azote, et capacité nourricière de la France dans la longue durée (1882–2016) et prémices pour une généralisation à l’échelle mondiale. Thèse. Université Paris Diderot, 265 p. [Google Scholar]
- Harchaoui S, Chatzimpiros P. 2017. Reconstructing production efficiency, land use and trade for livestock systems in historical perspective. The case of France, 1961–2010. Land Use Policy 67: 378–386. https://doi.org/10.1016/j.landusepol.2017.05.028. [CrossRef] [Google Scholar]
- Harchaoui S, Chatzimpiros P. 2018. Can agriculture balance its energy consumption and continue to produce food? A framework for assessing energy neutrality applied to French agriculture. Sustainability 10(12). https://doi.org/10.3390/su10124624. [CrossRef] [Google Scholar]
- Iablonovski G, Bognon S. 2019. Efficacité matérielle et performance écologique des territoires : analyse croisée de 67 métabolismes. Flux 2–3(116–117): 6–25. https://doi.org/10.3917/flux1.116.0006. [Google Scholar]
- Kleinpeter V, Vayssières J, Degenne P, Vigne M. 2021. Contribution de l’agriculture à la circularité des nutriments au sein du métabolisme d’un territoire insulaire : cas de l’Île de la Réunion. In: 10e Congrès international de l’AFEP, 29 juin–2 juillet 2021, Toulouse. [Google Scholar]
- Kleinpeter V, Alvanitakis M, Vigne M, Wassenaar T, Seen DL, Vayssières J. 2022. Assessing the roles of crops and livestock in nutrient circularity and use efficiency in the agri-food-waste system: a set of indicators applied to an isolated tropical island. Resources, Conservation & Recycling 188: 106663. https://doi.org/j.resconrec.2022.106663. [Google Scholar]
- Lacombe N. 2018. Co-produire. Repenser l’élevage par les interdépendances entre activités. Géocarrefour 92(3). https://doi.org/10.4000/geocarrefour.11230. [Google Scholar]
- LaRota-Aguilera MJ, Delgadillo-Vargas OL, Tello E. 2022. Sociometabolic research in Latin America: a review on advances and knowledge gaps in agroecological trends and rural perspectives. Ecological Economics 193: 107310. https://doi.org/10.1016/j.ecolecon.2021.107310. [CrossRef] [Google Scholar]
- Lassaletta L, Billen G, Grizzetti B, Garnier J, Leach AM, Galloway J. 2014. Food and feed trade as a driver in the global nitrogen cycle: 50-year trends. Biogeochemistry 118: 225–241. https://doi.org/10.1007/s10533-013-9923-4. [CrossRef] [Google Scholar]
- Le Noë J, Billen G, Lassaletta L, Silvestre M, Garnier J. 2016. La place du transport de denrées agricoles dans le cycle biogéochimique de l’azote en France : un aspect de la spécialisation des territoires. Cahiers Agricultures 25(1): 15004. https://doi.org/10.1051/cagri/2016002. [CrossRef] [EDP Sciences] [Google Scholar]
- Le Noë J, Billen G, Garnier J. 2017. How the structure of agro-food systems shapes nitrogen, phosphorus, and carbon fluxes: the generalized representation of agro-food system applied at the regional scale in France. Science of the Total Environment 586: 42–55. https://doi.org/10.1016/j.scitotenv.2017.02.040. [CrossRef] [Google Scholar]
- Le Noë J, Billen G, Esculier F, Garnier J. 2018. Long-term socioecological trajectories of agro-food systems revealed by N and P flows in French regions from 1852 to 2014. Agriculture, Ecosystems & Environment 265: 132–143. https://doi.org/10.1016/j.agee.2018.06.006. [CrossRef] [Google Scholar]
- Madelrieux S, Buclet N, Lescoat Ph, Moraine M. 2017. Écologie et économie des interactions entre filières agricoles et territoire : quels concepts et cadre d’analyse ? Cahiers Agricultures 26: 24001. https://doi.org/10.1051/cagri/2017013. [CrossRef] [EDP Sciences] [Google Scholar]
- Madelrieux S, Grilllot M, Dermine-Brullot S, Marty P, Godinot O, Ruault JF, et al. 2020. Biomasses d’origine agricole à l’échelle de territoires. Quelles formes de gestion et valorisation : entre cloisonnement, concurrence ou intégration ? Rapport final du projet Boat, 58 p. https://siddt.inrae.fr/module_statistiques/projet_boat_public/doc/Rapport-final-Boat_2021-03-10.pdf. [Google Scholar]
- Malassis L. 1996. Les trois âges de l’alimentaire. Agroalimentaria 96: 3–5. [Google Scholar]
- Martinez-Alier J, Naron S. 2004. Ecological distribution conflicts and indicators of sustainability. International Journal of Political Economy 34(1): 13–30. https://doi.org/10.1080/08911916.2004.11042914. [CrossRef] [Google Scholar]
- Marty P. 2013. Les appropriations urbaines de la question agricole. Le cas de Brive, de 1945 à 2012. Thèse. Université Panthéon-Sorbonne–Paris I, 630 p. [Google Scholar]
- Marty P, Dermine-Brullot S, Madelrieux S, Fleuet J, Lescoat P. 2021. Transformation of socioeconomic metabolism due to development of the bioeconomy: the case of northern Aube (France). European Planning Studies 30(7): 1212–1229. https://doi.org/10.1080/09654313.2021.1889475. [Google Scholar]
- Metreau E, Segré H, Alliot C, Ly S, Joseph M, Hallez S. 2021. Diagnostic du système alimentaire des Hauts de France, de sa durabilité et de sa résilience. Rapport Ademe–Le Basic-BIO Hauts de France, 85 p. [Google Scholar]
- Monsaingeon B. 2017. Homo Detritus. Paris (France): Éditions du Seuil, coll. « Anthropocène », 279 p. [Google Scholar]
- Moraine M, Duru M, Therond O. 2016. A social-ecological framework for analyzing and designing integrated crop-livestock systems from farm to territory levels. Renewable Agriculture and Food Systems 32(1): 43–56. https://doi.org/10.1017/S1742170515000526. [Google Scholar]
- Napoléone M, Corniaux C, Leclerc B, eds. 2015. Voies-lactées. Dynamique des bassins laitiers entre globalisation et territorialisation. Avignon (France): Cardère Éditions, 313 p. [Google Scholar]
- Nesme T, Senthilkumar K, Mollier A, Pellerin S. 2015. Effects of crop and livestock segregation on phosphorus resource use: a systematic, regional analysis. European Journal of Agronomy 71: 88–95. https://doi.org/10.1016/j.eja.2015.08.001. [CrossRef] [Google Scholar]
- Nesme T, Nowak B, David C, Pellerin S. 2016. L’agriculture biologique peut-elle se développer sans abandonner son principe d’écologie ? Le cas de la gestion des éléments minéraux fertilisants. Innovations Agronomiques 51: 57–66. https://doi.org/10.15454/1.4721176631543018E12. [Google Scholar]
- Nesme T, Metsone GS, Bennett EM. 2018. Global phosphorus flows through agricultural trade. Global Environmental Change 50: 133–141. https://doi.org/10.1016/j.gloenvcha.2018.04.004. [CrossRef] [Google Scholar]
- Observatoire de la formation des prix et des marges des produits alimentaires (OFPM). 2021. Rapport au Parlement. [Google Scholar]
- Odum H. 1967. Energetics of world food production. In: The world food problem, report of the President’s Science Advisory Committee, Panel on World Food Supply. pp. 55–94. [Google Scholar]
- Petit C. 2021. Le métabolisme agri-alimentaire pour une contribution de l’agronomie aux approches socio-métaboliques. Agronomie, Environnement & Sociétés 11(2). https://doi.org/10.54800/maa431. [Google Scholar]
- Pimentel D, Hurd LE, Bellotti AC, Forster MJ, Oka IN, Sholes OD, et al. 1973. Food production and the energy crisis. Science 182: 443–449. https://doi.org/10.1126/science.182.4111.443. [CrossRef] [PubMed] [Google Scholar]
- Puech T, Stark F. 2022. Diversification of an integrated crop-livestock system: agroecological and food production assessment at farm scale. Agriculture, Ecosystems & Environment 344: 108300. https://doi.org/10.1016/j.agee.2022.108300. [Google Scholar]
- Rastoin JL, Ghersi G. 2010. Le système alimentaire mondial. Concepts et méthodes, analyses et dynamiques. Versailles (France): Éditions Quæ, coll. « Synthèses », 584 p. https://doi.org/10.3917/quae.rasto.2010.01. [CrossRef] [Google Scholar]
- Redlingshöfer B. 2015. La méthodologie utilisée dans l’étude INRA pour l’analyse des pertes alimentaires dans les filières. Innovations Agronomiques 48: 11–22. https://doi.org/10.15454/1.4622704219926074E12. [Google Scholar]
- Redlingshöfer B. 2022. Food waste in cities: an urban metabolism approach applied to Paris and Île-de-France. Thèse. Humboldt Universität zu Berlin, 455 p. [Google Scholar]
- Sailley M, Cordier C, Courtonne JY, Duflot B, Cadudal F, Perrot C, et al. 2021. Quantifier et segmenter les flux de matières premières utilisées en France par l’alimentation animale. INRA Productions Animales 34(4): 273–292. https://doi.org/10.20870/productions-animales.2021.34.4.5396. [Google Scholar]
- Serrano-Tovar T, Giampietro M. 2014. Multi-scale integrated analysis of rural Laos: studying metabolic patterns of land uses across different levels and scales. Land Use Policy 36: 155–170. https://doi.org/10.1016/j.landusepol.2013.08.003. [CrossRef] [Google Scholar]
- Stark F, Archimède H, González-García E, Poccard-Chapuis R, Fanchone A, Moulin CH. 2019. Évaluation des performances agroécologiques des systèmes de polyculture-élevage en milieu tropical humide : application de l’analyse de réseaux écologiques. Innovations Agronomiques 72: 1–14. https://doi.org/10.15454/l1w6us. [Google Scholar]
- Steffen W, Richardson K, Rockstrom J, Cornell SE, Fetz I, Bennett EM, et al. 2015. Planetary boundaries: guiding human development on a changing planet. Science 347: 6223. https://doi.org/10.1126/science.1259855. [CrossRef] [Google Scholar]
- Tedesco C, Petit C, Billen G, Garnie J, Personne E. 2017. Potential for recoupling production and consumption in peri-urban territories: the case-study of the Saclay plateau near Paris, France. Food Policy 69: 35–45. https://doi.org/10.1016/j.foodpol.2017.03.006. [CrossRef] [Google Scholar]
- United Nations Environment Programme (UNEP). 2021. Food waste index report 2021. Nairobi, Kenya, 100 p. https://www.unep.org/resources/report/unep-food-waste-index-report-2021. [Google Scholar]
- Vayssières J, Bravin M. 2020. L’agriculture au cœur de l’économie circulaire. In: Agronews. Édition Réunion-Mayotte/Océan indien, hors-série, 20 p. [Google Scholar]
- Vayssières J. 2021. Modélisation intégrée et pluri-niveaux des stock-flux de matière et d’énergie dans les systèmes agricoles pour l’évaluation multicritère et l’accompagnement de transitions en élevage. Habilitation à diriger des recherches. Université de Montpellier, 122 p. [Google Scholar]
- Verger Y, Petit C, Barles S, Billen G, Garnier J, Esculier F, et al. 2018. A N, P, C, and water flows metabolism study in a peri-urban territory in France: the case-study of the Saclay plateau. Resources, Conservation & Recycling 137: 200–213. https://doi.org/10.1016/j.resconrec.2018.06.007. [CrossRef] [Google Scholar]
- Verhaeghe L. 2021. Renouvellement des relations villes-campagnes et transition socio-écologique : quelles perspectives pour le métabolisme ? Thèse. Université Paris 1–Panthéon-Sorbonne, 413 p. [Google Scholar]
- Vigne M, Martin O, Faverdin P, Peyraud JL. 2012. Comparative uncertainty analysis of energy coefficients in energy analysis of dairy farms from two French territories. Journal of Cleaner Production 35: 185–191. https://doi.org/10.1016/j.jclepro.2012.07.005. [CrossRef] [Google Scholar]
- Vigne M, Vayssières J, Lecomte P, Peyraud JL. 2013. Pluri-energy analysis of livestock systems. A comparison of dairy systems in different territories. Journal of Environmental Management 126: 44–54. https://doi.org/10.1016/j.jenvman.2013.04.003. [CrossRef] [PubMed] [Google Scholar]
- Vigne M, Achard P, Alison C, Castanier C, Choisis JP, Conrozier R, et al. 2021. Une agronomie clinique et territoriale pour accompagner la transition vers une économie circulaire autour de l’agriculture : mise à l’épreuve et enseignements du projet GABiR à La Réunion. Agronomie, Environnement & Sociétés 11(2): 167–182. https://doi.org/10.54800/bir974. [Google Scholar]
- Wassenaar T. 2015. Reconsidering industrial metabolism from analogy to denoting actuality. Journal of Industrial Ecology 19(5): 715–727. https://doi.org/10.1111/jiec.12349. [CrossRef] [Google Scholar]
- Wassenaar T. 2018. Vers une écologie territoriale des résidus organiques. Habilitation à diriger des recherches. Université de Montpellier, 176 p. [Google Scholar]
- Wassenaar T, Queste J, Paillat JM, Saint Macary H. 2015. La co-construction de filières de recyclage de résidus organiques à la Réunion. Innovations Agronomiques 43: 161–175. [Google Scholar]
- Wilfart A, Corson MS, Aubin J. 2012. La méthode EMERGY : principes et application en analyse environnementale des systèmes agricoles et de production animale. INRA Productions Animales 25(1): 57–66. https://doi.org/10.20870/productions-animales.2012.25.1.3197. [CrossRef] [Google Scholar]
- Wohlfahrt J, Ferchaud F, Gabrielle B, Godard C, Kurek B, Loyce C, et al. 2019. Characteristics of bioeconomy systems and sustainability issues at the territorial scale. A review. Journal of Cleaner Production 232: 898–909. https://doi.org/10.1016/j.jclepro.2019.05.385. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.