Open Access
Review
Numéro |
Cah. Agric.
Volume 32, 2023
|
|
---|---|---|
Numéro d'article | 7 | |
Nombre de pages | 10 | |
DOI | https://doi.org/10.1051/cagri/2022036 | |
Publié en ligne | 3 février 2023 |
- Allizond V, Comini S, Bianco G, Costa C, Boattini M, Mandras N, et al. 2021. Exposure to the agricultural fungicide tebuconazole promotes Aspergillus fumigatus cross-resistance to clinical azoles. New Microbiologist 44: 234–240. [Google Scholar]
- Alvarez-Moreno C, Lavergne RA, Hagen F, Morio F, Meis JF, Le Pape P. 2019. Fungicide-driven alterations in azole-resistant Aspergillus fumigatus are related to vegetable crops in Colombia, South America. Mycologia 111: 217–224. https://doi.org/10.1080/00275514.2018.1557796. [CrossRef] [PubMed] [Google Scholar]
- Amulu LU, Adekunle OK. 2015. Comparative effects of poultry manure, cow dung, and carbofuran on yield of Meloidogyne incognita-infested okra. Journal of Agricultural Science and Technology 17: 495–504. http://ir.jkuat.ac.ke/handle/123456789/4246. [Google Scholar]
- Avery LM, Booth P, Campbell C, Tompkins D, Hough RL. 2012. Prevalence and survival of potential pathogens in source-segregated green waste compost. Science of the Total Environment 431: 128–138. https://doi.org/10.1016/j.scitotenv.2012.05.020. [CrossRef] [Google Scholar]
- Banerjee S, Denning DW, Chakrabarti A. 2021. One Health aspects & priority roadmap for fungal diseases: a mini-review. Indian Journal of Medical Research 153: 311–319. https://doi.org/10.4103/ijmr.IJMR_768_21. [CrossRef] [PubMed] [Google Scholar]
- Barber AE, Riedel J, Sae-Ong T, Kang K, Brabetz W, Panagiotou G, et al. 2020. Effects of agricultural fungicide use on Aspergillus fumigatus abundance, antifungal susceptibility, and population structure. MBio 11: e02213–20. https://doi.org/10.1128/mBio.02213-20. [CrossRef] [PubMed] [Google Scholar]
- Bastos RW, Carneiro HCS, Oliveira LVN, Rocha KM, Freitas GJC, Costa MC, et al. 2018. Environmental triazole induces cross-resistance to clinical drugs and affects morphophysiology and virulence of Cryptococcus gattii and C. neoformans. Antimicrobial Agents Chemotherapy 62: e01179–17. https://doi.org/10.1128/AAC.01179-17. [CrossRef] [PubMed] [Google Scholar]
- Bastos RW, Freitas GJC, Carneiro HCS, Oliveira LVN, Gouveia-Eufrasio L, Santos APN, et al. 2019. From the environment to the host: how non-azole agrochemical exposure affects the antifungal susceptibility and virulence of Cryptococcus gattii. Science of the Total Environment 681: 516–523. https://doi.org/10.1016/j.scitotenv.2019.05.094. [CrossRef] [Google Scholar]
- Beer KD, Farnon EC, Jain S, Jamerson C, Lineberger S, Miller J, et al. 2018. Multidrug-resistant Aspergillus fumigatus carrying mutations linked to environmental fungicide exposure—three states, 2010–2017. Morbidity and Mortality Weekly Report 67: 1064. [CrossRef] [PubMed] [Google Scholar]
- Berger S, El Chazli Y, Babu AF, Coste AT. 2017. Azole resistance in Aspergillus fumigatus: a consequence of antifungal use in agriculture? Frontiers in Microbiology 8: 1024. https://doi.org/10.3389/fmicb.2017.01024. [CrossRef] [PubMed] [Google Scholar]
- Bromley MJ, Van Muijlwijk G, Fraczek MG, Robson G, Verweij PE, Denning DW, et al. 2014. Occurrence of azole-resistant species of Aspergillus in the UK environment. Journal of Global Antimicrobial Resistance 2: 276–279. https://doi.org/10.1016/j.jgar.2014.05.004. [CrossRef] [PubMed] [Google Scholar]
- Brilhante RSN, de Alencar LP, Bandeira SP, Sales JA, de Jesus Evangelista AJ, Serpa S, et al. 2019. Exposure of Candida parapsilosis complex to agricultural azoles: an overview of the role of environmental determinants for the development of resistance. Science of the Total Environment 650: 1231–1238. https://doi.org/10.1016/j.scitotenv.2018.09.096. [CrossRef] [Google Scholar]
- Buil JB, Hare RK, Zwaan BJ, Arendrup MC, Melchers WJG, Verweij PE. 2019. The fading boundaries between patient and environmental routes of triazole resistance selection in Aspergillus fumigatus. PLoS Pathogens 15: e1007858. https://doi.org/10.1371/journal.ppat.1007858. [CrossRef] [PubMed] [Google Scholar]
- Burks C, Darby A, Gomez Londoño L, Momany M, Brewer MT. 2021. Azole-resistant Aspergillus fumigatus in the environment: identifying key reservoirs and hotspots of antifungal resistance. PLoS Pathogens 17: e1009711. https://doi.org/10.1371/journal.ppat.1009711. [CrossRef] [PubMed] [Google Scholar]
- Cao D, Wang F, Yu S, Dong S, Wu R, Cui N, et al. 2021. Prevalence of azole-resistant Aspergillus fumigatus is highly associated with azole fungicide residues in the fields. Environmental Science & Technology 55: 3041–3049. https://doi.org/10.1021/acs.est.0c03958?ref=pdf. [CrossRef] [PubMed] [Google Scholar]
- Carneiro HCS, Bastos RW, Ribeiro NQ, Gouveia-Eufrasio L, Costa MC, Magalhães TFF, et al. 2020. Hypervirulence and cross-resistance to a clinical antifungal are induced by an environmental fungicide in Cryptococcus gattii. Science of the Total Environment 740: 140135. https://doi.org/10.1016/j.scitotenv.2020.140135. [CrossRef] [Google Scholar]
- Casadevall A, Kontoyiannis DP, Robert V. 2019. On the emergence of Candida auris: climate change, azoles, swamps, and birds. mBio 10: e01397–19. https://doi.org/10.1128/mBio.01397-19. [PubMed] [Google Scholar]
- Chappity P, Hallur V. 2021. Subcutaneous fungal infection of the face. The Lancet Infectious Diseases 21: 296. [CrossRef] [PubMed] [Google Scholar]
- Chen PY, Chuang YC, Wu UI, Sun HY, Wang JT, Sheng WH, et al. 2019. Clonality of fluconazole-nonsusceptible Candida tropicalis in bloodstream infections, Taiwan, 2011–2017. Emerging Infectious Diseases 25: 1668. https://doi.org/10.3201/eid2509.190520. [Google Scholar]
- Chowdhary A, Kathuria S, Randhawa HS, Gaur SN, Klaassen CH, Meis JF. 2012. Isolation of multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR/L98H mutations in the cyp51A gene in India. Journal of Antimicrobial Chemotherapy 67: 362–366. https://doi.org/10.1093/jac/dkr443. [CrossRef] [PubMed] [Google Scholar]
- Chowdhary A, Kathuria S, Xu J, Meis JF. 2013. Emergence of azole-resistant Aspergillus fumigatus strains due to agricultural azole use creates an increasing threat to human health. PLoS Pathogens 9: e1003633. https://doi.org/10.1371/journal.ppat.1003633. [Google Scholar]
- Clarivate Analytics. 2021. Web of Science Databases. [2022/02/15]. https://clarivate.com/products/web-of-science/databases/. [Google Scholar]
- Corkley I, Fraaije B, Hawkins N. 2022. Fungicide resistance management: maximizing the effective life of plant protection products. Plant Pathology 71: 150–169. https://doi.org/10.1111/ppa.13467. [CrossRef] [Google Scholar]
- Deguine JP, Aubertot JN, Bellon S, Côte F, Lauri PE, Lescourret F, et al. 2023. Agroecological crop protection for sustainable agriculture. Advances in Agronomy 178. https://doi.org/10.1016/bs.agron.2022.11.002 (in press). [Google Scholar]
- Dongmo W, Kechia F, Tchuenguem R, Nangwat C, Yves I, Kuiate JR, et al. 2016. In vitro antifungal susceptibility of environmental isolates of Cryptococcus spp. from the West Region of Cameroon. Ethiopian Journal of Health Sciences 26: 555–560. https://doi.org/10.4314/ejhs.v26i6.8. [CrossRef] [PubMed] [Google Scholar]
- Dorin J, Debourgogne A, Zaïdi M, Bazard MC, Machouart M. 2015. First unusual case of keratitis in Europe due to the rare fungus Metarhizium anisopliae. International Journal of Medical Microbiology 305: 408–412. https://doi.org/10.1016/j.ijmm.2015.03.004. [CrossRef] [PubMed] [Google Scholar]
- Dupré M, Michels T, Le Gal PY. 2017. Diverse dynamics in agroecological transitions on fruit tree farms. European Journal of Agronomy 90: 23–33. https://doi.org/10.1016/j.eja.2017.07.002. [CrossRef] [Google Scholar]
- Enserink M. 2009. Farm fungicides linked to resistance in a human pathogen. Science 326: 1173. https://doi.org/10.1126/science.326.5957.1173. [CrossRef] [PubMed] [Google Scholar]
- FAO, CIRAD, CIFOR, WCS. 2020. White paper: Build back better in a post-COVID-19 world − Reducing future wildlife-borne spillover of disease to humans: Sustainable Wildlife Management (SWM) Programme. Rome: FAO. https://doi.org/10.4060/cb1503en. [Google Scholar]
- Faria-Ramos I, Tavares PR, Farinha S, Neves-Maia J, Miranda IM, Silva RM, et al. 2014. Environmental azole fungicide, prochloraz, can induce cross-resistance to medical triazoles in Candida glabrata. FEMS Yeast Research 14: 1119–1123. https://doi.org/10.1111/1567-1364.12193. [PubMed] [Google Scholar]
- Fraaije B, Atkins S, Hanley S, Macdonald A, Lucas J. 2020. The multi-fungicide resistance status of Aspergillus fumigatus populations in arable soils and the wider European environment. Frontiers in Microbiology 11: 599233. https://doi.org/10.3389/fmicb.2020.599233. [CrossRef] [PubMed] [Google Scholar]
- Garcia-Rubio R, Gonzalez-Jimenez I, Lucio J, Mellado E. 2021. Aspergillus fumigatus cross-resistance between clinical and demethylase inhibitor azole drugs. Applied Environmental Microbiology 87: e02539–20. https://doi.org/10.1128/AEM.02539-20. [CrossRef] [Google Scholar]
- Gisi U. 2014. Assessment of selection and resistance risk for demethylation inhibitor fungicides in Aspergillus fumigatus in agriculture and medicine: a critical review. Pest Management Science 70: 352–364. https://doi.org/10.1002/ps.3664. [CrossRef] [PubMed] [Google Scholar]
- Godeau C, Reboux G, Scherer E, Laboissiere A, Lechenault-Bergerot C, Million L, et al. 2020. Azole-resistant Aspergillus fumigatus in the hospital: Surveillance from flower beds to corridors. American Journal of Infection Control 48: 702–704. https://doi.org/10.1016/j.ajic.2019.10.003. [CrossRef] [PubMed] [Google Scholar]
- Godeau C, Morin-Crini N, Staelens JN, Martel B, Rocchi S, Chanet G, et al. 2021. Adsorption of a triazole antifungal agent, difenoconazole, on soils from a cereal farm: protective effect of hemp felt. Environmental Technology & İnnovation 22: 101394. https://doi.org/10.1016/j.eti.2021.101394. [CrossRef] [Google Scholar]
- Gómez Londoño LF, Pérez León LC, McEwen Ochoa JG, Zuluaga Rodriguez A, Peláez Jaramillo CA, Acevedo Ruiz JM, et al. 2019. Capacity of Histoplasma capsulatum to survive the composting process. Applied & Environmental Soil Science 2019. https://doi.org/10.1155/2019/5038153. [Google Scholar]
- Gürcan Ş, Tuğrul HM, Yörük Y, Özer B, Tatman-Otkun M, Otkun M. 2006. First case report of empyema caused by Beauveria bassiana. Mycoses 49: 246–248. https://doi.org/10.1111/j.1439-0507.2006.01232.x. [CrossRef] [PubMed] [Google Scholar]
- Hagiwara D. 2020. Isolation of azole-resistant Aspergillus fumigatus from imported plant bulbs in Japan and the effect of fungicide treatment. Journal of Pesticide Science 45: 147–150. https://doi.org/10.1584/jpestics.D20-017. [CrossRef] [PubMed] [Google Scholar]
- Hill SB, MacRae RJ. 1996. Conceptual framework for the transition from conventional to sustainable agriculture. Journal of Sustainable Agriculture 7: 81–87. https://doi.org/10.1300/J064v07n01_07. [CrossRef] [Google Scholar]
- Homa M, Galgóczy L, Manikandan P, Narendran V, Sinka R, Csernetics A, et al. 2018. South Indian isolates of the Fusarium solani species complex from clinical and environmental samples: identification, antifungal susceptibilities, and virulence. Frontiers in Microbiology 9: 1052. https://doi.org/10.3389/fmicb.2018.01052. [CrossRef] [PubMed] [Google Scholar]
- Jayasvati I, Jayasvati M. 2018. Bat guano as the component of fertilizer or the health hazard? Southeast Asian Journal of Tropical Medicine 49: 331–339. [Google Scholar]
- Jørgensen LN, Heick TM. 2021. Azole use in agriculture, horticulture, and wood preservation − Is it indispensable? Frontiers in Cellular and Infection Microbiology 11: 730297. https://doi.org/10.3389/fcimb.2021.730297. [CrossRef] [PubMed] [Google Scholar]
- Kano R, Kohata E, Tateishi A, Murayama SY, Hirose D, Shibata Y, et al. 2015. Does farm fungicide use induce azole resistance in Aspergillus fumigatus? Medical Mycology 53: 174–177. https://doi.org/10.1093/mmy/myu076. [CrossRef] [PubMed] [Google Scholar]
- Keleher S. 1996. Guano: bats’ gift to gardeners. Bats 14: 15–17. [Google Scholar]
- Kisla TA, Cu-Unjieng A, Sigler L, Sugar J. 2000. Medical management of Beauveria bassiana keratitis. Cornea 19: 405–406. [CrossRef] [PubMed] [Google Scholar]
- Kyu HH, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. 2018. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet 392: 1859–1922. https://doi.org/10.1016/S0140-6736(18)32335-3. [CrossRef] [Google Scholar]
- Léchenault-Bergerot C, Morin-Crini N, Rocchi S, Lichtfouse E, Chanet G, Crini G. 2019. Hemp to limit diffusion of difenoconazole in vegetable garden soils. Heliyon 5: e02392. https://doi.org/10.1016/j.heliyon.2019.e02392. [CrossRef] [PubMed] [Google Scholar]
- Lo HJ, Tsai SH, Chu WL, Chen YZ, Zhou ZL, Chen HF, et al. 2017. Fruits as the vehicle of drug resistant pathogenic yeasts. Journal of Infection 75: 254–262. https://doi.org/10.1016/j.jinf.2017.06.005. [CrossRef] [Google Scholar]
- Meireles LM, de Araujo ML, Endringer DC, Fronza M, Scherer R. 2019. Change in the clinical antifungal sensitivity profile of Aspergillus flavus induced by azole and a benzimidazole fungicide exposure. Diagnostic Microbiology & Infectious Disease 95: 171–178. https://doi.org/10.1016/j.diagmicrobio.2019.05.019. [CrossRef] [Google Scholar]
- Mortensen KL, Mellado E, Lass-Flörl C, Rodriguez-Tudela JL, Johansen HK, Arendrup MC. 2010. Environmental study of azole-resistant Aspergillus fumigatus and other aspergilli in Austria, Denmark, and Spain. Antimicrobial Agents Chemotherapy 54: 4545–4549. https://doi.org/10.1128/AAC.00692-10. [CrossRef] [PubMed] [Google Scholar]
- Müller FMC, Staudigel A, Salvenmoser S, Tredup A, Miltenberger R, Herrmann JV. 2007. Cross-resistance to medical and agricultural azole drugs in yeasts from the oropharynx of human immunodeficiency virus patients and from environmental Bavarian vine grapes. Antimicrobial Agents Chemotherapy 51: 3014–3016. https://doi.org/10.1128/AAC.00459-07. [CrossRef] [PubMed] [Google Scholar]
- Nourrisson C, Dupont D, Lavergne RA, Dorin J, Forouzanfar F, Denis J, et al. 2017. Species of Metarhizium anisopliae complex implicated in human infections: retrospective sequencing study. Clinical Microbiology & Infection 23: 994–999. https://doi.org/10.1016/j.cmi.2017.05.001. [CrossRef] [Google Scholar]
- Potocki L, Baran A, Oklejewicz B, Szpyrka E, Podbielska M, Schwarzbacherová V. 2020. Synthetic pesticides used in agricultural production promote genetic instability and metabolic variability in Candida spp. Genes 11: 848. https://doi.org/10.3390/genes11080848. [CrossRef] [PubMed] [Google Scholar]
- Prigitano A, Venier V, Cogliati M, De Lorenzis G, Esposto MC, Tortorano AM. 2014. Azole-resistant Aspergillus fumigatus in the environment of northern Italy, May 2011 to June 2012. Eurosurveillance 19: 20747. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20747. [CrossRef] [Google Scholar]
- Ratnadass A, Deberdt P. 2021. Pratiques de protection des cultures en agroécosystèmes tropicaux et risques de maladies humaines et animales d’origine bactérienne. Cahiers Agricultures 30: 42. https://doi.org/10.1051/cagri/2021028. [CrossRef] [EDP Sciences] [Google Scholar]
- Ratnadass A, Deguine JP. 2021. Crop protection practices and viral zoonotic risks within a One Health framework. Science of the Total Environment 774: 145172. https://doi.org/10.1016/j.scitotenv.2021.145172. [CrossRef] [Google Scholar]
- Ratnadass A, Martin T. 2022. Crop protection practices and risks associated with infectious tropical parasitic diseases. Science of the Total Environment 823: 153633. https://doi.org/10.1016/j.scitotenv.2022.153633. [CrossRef] [Google Scholar]
- Ren J, Jin X, Zhang Q, Zheng Y, Lin D, Yu Y. 2017. Fungicides induced triazole-resistance in Aspergillus fumigatus associated with mutations of TR46/Y121F/T289A and its appearance in agricultural fields. Journal of Hazardous Materials 326: 54–60. https://doi.org/10.1016/j.jhazmat.2016.12.013. [CrossRef] [PubMed] [Google Scholar]
- Renčo M, Kováčik P. 2012. Response of plant parasitic and free living soil nematodes to composted animal manure soil amendments. Journal of Nematology 44: 329–336. [PubMed] [Google Scholar]
- Rocchi S, Daguindau E, Grenouillet F, Deconinck E, Bellanger AP, Garcia-Hermoso D, et al. 2014. Azole-resistant Aspergillus fumigatus isolate with the TR34/L98H mutation in both a fungicide-sprayed field and the lung of a hematopoietic stem cell transplant recipient with invasive aspergillosis. Journal of Clinical Microbiology 52: 1724–1726. https://doi.org/10.1128/JCM.03182-13. [CrossRef] [PubMed] [Google Scholar]
- Rocchi S, Ponçot M, Morin-Crini N, Laboissière A, Valot B, Godeau C, et al. 2018. Determination of azole fungal residues in soils and detection of Aspergillus fumigatus-resistant strains in market gardens of Eastern France. Environmental Science and Pollution Research 25: 32015–32023. https://doi.org/10.1007/s11356-018-3177-6. [CrossRef] [PubMed] [Google Scholar]
- Rocchi S, Godeau C, Scherer E, Reboux G, Millon L. 2021. One year later: the effect of changing azole-treated bulbs for organic tulips bulbs in hospital environment on the azole-resistant Aspergillus fumigatus rate. Medical Mycology 59: 741–743. https://doi.org/10.1093/mmy/myab007. [CrossRef] [PubMed] [Google Scholar]
- Rocha MFG, Alencar LPD, Paiva MAN, Melo LM, Bandeira SP, Ponte YB, et al. 2016. Cross‐resistance to fluconazole induced by exposure to the agricultural azole tetraconazole: an environmental resistance school? Mycoses 59: 281–290. https://doi.org/10.1111/myc.12457 [CrossRef] [PubMed] [Google Scholar]
- Schoustra SE, Debets AJ, Rijs AJ, Zhang J, Snelders E, Leendertse PC, et al. 2019. Environmental hotspots for azole resistance selection of Aspergillus fumigatus, the Netherlands. Emerging Infectious Diseases 25: 1347–1353. https://doi.org/10.3201/eid2507.181625. [CrossRef] [PubMed] [Google Scholar]
- Serfling A, Wohlrab J, Deising HB. 2007. Treatment of a clinically relevant plant-pathogenic fungus with an agricultural azole causes cross-resistance to medical azoles and potentiates caspofungin efficacy. Antimicrobial Agents Chemotherapy 51: 3672–3676. https://doi.org/10.1128/AAC.00654-07. [CrossRef] [PubMed] [Google Scholar]
- Sewell TR, Zhu J, Rhodes J, Hagen F, Meis JF, Fisher MC, et al. 2019. Nonrandom distribution of azole resistance across the global population of Aspergillus fumigatus. mBio 10: e00392–19. https://doi.org/10.1128/mBio.00392-19. [CrossRef] [PubMed] [Google Scholar]
- Sharma C, Hagen F, Moroti R, Meis JF, Chowdhary A. 2015. Triazole-resistant Aspergillus fumigatus harbouring G54 mutation: is it de novo or environmentally acquired? Journal of Global Antimicrobial Resistance 3: 69–74. https://doi.org/10.1016/j.jgar.2015.01.005. [CrossRef] [PubMed] [Google Scholar]
- Shenge KC, LeJeune JT. 2014. One Health: A focus on interdisciplinary collaboration. Advances in Plants & Agriculture Research 1: 00018. https://doi.org/10.15406/apar.2014.01.00018. [Google Scholar]
- Snelders E, Camps SMT, Karawajczyk A, Schaftenaar G, Kema GHJ, van der Lee HA, et al. 2012. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS ONE 7: e31801. https://doi.org/10.1371/journal.pone.0031801. [Google Scholar]
- Toyotome T, Fujiwara T, Kida H, Matsumoto M, Wada T, Komatsu R. 2016. Azole susceptibility in clinical and environmental isolates of Aspergillus fumigatus from eastern Hokkaido, Japan. Journal of Infection & Chemotherapy 22: 648–650. https://doi.org/10.1016/j.jiac.2016.03.002. [CrossRef] [Google Scholar]
- Tucker DL, Beresford CH, Sigler L, Rogers K. 2004. Disseminated Beauveria bassiana infection in a patient with acute lymphoblastic leukemia. Journal of Clinical Microbiology 42: 5412–5414. https://doi.org/10.1128/JCM.42.11.5412-5414.2004. [CrossRef] [PubMed] [Google Scholar]
- Verweij PE, Snelders E, Kema GH, Mellado E, Melchers WJ. 2009. Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? The Lancet Infectious Diseases 9: 789–795. https://doi.org/10.1016/S1473-3099(09)70265-8. [CrossRef] [PubMed] [Google Scholar]
- Vilela R, Mendoza L. 2018. Human pathogenic Entomophthorales. Clinical Microbiology Reviews 31: e00014–18. https://doi.org/10.1128/CMR.00014-18. [CrossRef] [PubMed] [Google Scholar]
- Yang YL, Lin CC, Chang TP, Lauderdale TL, Chen HT, Lee CF, et al. 2012. Comparison of human and soil Candida tropicalis isolates with reduced susceptibility to fluconazole. PLoS ONE 7: e34609. https://doi.org/10.1371/journal.pone.0034609. [Google Scholar]
- Yu L, Wen Y, Luo X, Xiang Y, Yuan X, Pang S, et al. 2022. Effects of biogas residues on dissipation of difenoconazole in paddy sediment system under field conditions. Frontiers in Environmental Science 10: 814438. https://doi.org/10.3389/fenvs.2022.814438. [CrossRef] [Google Scholar]
- Zhang J, van den Heuvel F J, Debets AJM, Verweij PE, Melchers WJG, Zwaan BJ, et al. 2017. Evolution of cross-resistance to medical triazoles in Aspergillus fumigatus through selection pressure of environmental fungicides. Proceedings of the Royal Society B 284: 20170635. https://doi.org/10.1098/rspb.2017.0635. [CrossRef] [PubMed] [Google Scholar]
- Zuhair RM, Al-Assiuty ANI, Khalil MA, Salama WM. 2022. Efficacy of vermicompost amended and bacterial diversity on plant growth and pathogen control. International Journal of Recycling of Organic Waste in Agriculture 11: 131–141. https://doi.org/10.30486/IJROWA.2021.1919606.1176. [Google Scholar]
- Żukiewicz-Sobczak W, Cholewa G, Krasowska E, Zwoliński J, Sobczak P, Zawiślak K, et al. 2012. Pathogenic fungi in the work environment of organic and conventional farmers. Postepy Dermatologii I Alergologii 29: 252–262. https://doi.org/10.5114/pdia.2012.30463. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.