Open Access
Cah. Agric.
Volume 25, Number 2, Mars-Avril 2016
Article Number 25003
Number of page(s) 8
Section Études originales / Original Studies
Published online 01 April 2016
  • Aadland D, Caplan AJ. 2006. Cheap talk reconsidered: New evidence from CVM. J. Econ. Behav. Org. 60: 562– 578. [CrossRef] [Google Scholar]
  • Abdullah MY. 2007. Climate change and food security, MARDI. Available at: [Google Scholar]
  • Acquah H. 2011. Farmers perception and adaptation to climate change: A willingness to pay analysis. J. Sust. Dev. Afr. 13: 150– 161. [Google Scholar]
  • Alam MM, Toriman M, Siwar C, Molla RI, Talib B. 2011. Impact of agricultural supports for climate change adaptation: A farm level assessment. Am. J. Environ. Sci. 7: 178. [CrossRef] [Google Scholar]
  • Arbuckle Jr JG, Morton LW, Hobbs J. 2013. Farmer beliefs and concerns about climate change and attitudes toward adaptation and mitigation: Evidence from Iowa. Clim. Change 118: 551– 563. [CrossRef] [Google Scholar]
  • Austin OC, Baharuddin AH. 2012. Risk in Malaysian agriculture: The need for a strategic approach and a policy refocus. J. Malay. Stud. 13: 21. [Google Scholar]
  • Barnes A, Islam MM, Toma L. 2013. Heterogeneity in climate change risk perception amongst dairy farmers: A latent class clustering analysis. Appl. Geogr. 41: 105– 115. [CrossRef] [Google Scholar]
  • Boyle KJ. 2003. Contingent valuation in practice. In: Champ PA, Boyle KJ, Brown TC, eds. A primer on nonmarket valuation. Netherland: Springer. [Google Scholar]
  • Carson R. 2012. Contingent valuation: a comprehensive bibliography and history. Cheltenham, UK: Edward Elgar Publishing. [Google Scholar]
  • Carson RT, Louviere JJ, Wei E. 2010. Alternative Australian climate change plans: The public's views. Energy Policy 38: 902– 911. [CrossRef] [Google Scholar]
  • Fankhauser S. 2013. Valuing climate change: the economics of the greenhouse. New York: Routledge. [Google Scholar]
  • FAO. 2015. A special report on crop and food security assessment mission to Swaziland. In: Pound J, Michiels J, Bonifácio R, eds. Swaziland: World Food Programme. [Google Scholar]
  • Gornall J, Betts R, Burke E, Clark R, Camp J, Willett K, et al. 2010. Implications of climate change for agricultural productivity in the early twenty-first century. Philos. Trans. R Soc. Lond. B Biol. Sci. 365: 2973– 2989. doi:10.1098/rstb.2010.0158 [CrossRef] [PubMed] [Google Scholar]
  • Greene WH. 2012. Econometric analysis, 7th ed. Upper Saddle River. New Jersey: Prentice Hall. [Google Scholar]
  • Initial National Communication (INC). 2000. Malaysia national communication. Ministry of Science, Technology and the Environment. United Nations Framework Convention on Climate Change. [Google Scholar]
  • IPPC. 2014. Summary for policymakers. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, eds. Climate change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Google Scholar]
  • Kennedy P. 2008. A guide to econometrics. Cambridge, Massachusetts: MIT press. [Google Scholar]
  • Kurukulasuriya P, Rosenthal S. 2013. Climate change and agriculture: A review of impacts and adaptations. Environ. Dep. Papers 91: 1– 106. [Google Scholar]
  • Le Dang H, Li E, Bruwer J, Nuberg I. 2014. Farmers’ perceptions of climate variability and barriers to adaptation: lessons learned from an exploratory study in Vietnam. Mitig. Adapt. Strateg. Global Change 19: 531– 548. [Google Scholar]
  • Lobell DB, Schlenker W, Costa-Roberts J. 2011. Climate trends and global crop production since 1980. Science 333: 616– 620. [CrossRef] [PubMed] [Google Scholar]
  • Luers AL, Lobell DB, Sklar LS, Addams CL, Matson PA. 2003. A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Global Environ. Change 13: 255– 267. [CrossRef] [Google Scholar]
  • Menapace L, Colson G, Raffaelli R. 2015. Climate change beliefs and perceptions of agricultural risks: An application of the exchangeability method. Global Environ. Change 35: 70– 81. [CrossRef] [Google Scholar]
  • Menter J. 2012. Helping U.S. farmers increase production and protect the land. Yale Environ. 360: 1– 3. [Google Scholar]
  • Rowe RD, Schulze WD, Breffle WS. 1996. A test for payment card biases. J. Environ. Econ. Manage. 31: 178– 185. [CrossRef] [Google Scholar]
  • Safi AS, Smith WJ, Liu Z. 2012. Rural Nevada and climate change: vulnerability, beliefs, and risk perception. Risk Anal. 32: 1041– 1059. [CrossRef] [PubMed] [Google Scholar]
  • Singh J. 2014. Textbook of agricultural meteorology. Jaipur, India: Oxford book company. [Google Scholar]
  • Siwar C, Alam MM, Murad MW, Al-Amin AQ. 2009. A review of the linkages between climate change, agricultural sustainability and poverty in Malaysia. Int. Rev. Bus. Res. Papers 5: 309– 321. [Google Scholar]
  • Srisopaporn S, Jourdain D, Perret SR, Shivakoti G. 2015. Adoption and continued participation in a public Good Agricultural Practices program: The case of rice farmers in the Central Plains of Thailand. Technol. Forecast. Soc. Change 96: 242– 253. doi: [CrossRef] [Google Scholar]
  • Stern NH, Treasury HM. 2006. Stern Review: The economics of climate change. London: HM treasury. [Google Scholar]
  • Tao F, Hayashi Y, Zhang Z, Sakamoto T, Yokozawa M. 2008. Global warming, rice production, and water use in China: developing a probabilistic assessment. Agric. Forest Meteorol. 148: 94– 110. [CrossRef] [Google Scholar]
  • Wheeler S, Zuo A, Bjornlund H. 2013. Farmers’ climate change beliefs and adaptation strategies for a water scarce future in Australia. Global Environ. Change 23: 537– 547. [CrossRef] [Google Scholar]
  • Yoo SH, Kwak SY. 2009. Willingness to pay for green electricity in Korea: A contingent valuation study. Energy Policy 37: 5408– 5416. [CrossRef] [Google Scholar]
  • Yu X, Abler D. 2010. Incorporating zero and missing responses into CVM with open-ended bidding: Willingness to pay for blue skies in Beijing. Environ. Dev. Econ. 15: 535– 556. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.