Numéro
Cah. Agric.
Volume 27, Numéro 3, Mai–Juin 2018
Les agricultures face au changement climatique. Coordonnateur : Emmanuel Torquebiau
Numéro d'article 35001
Nombre de pages 8
Section Études originales / Original Studies
DOI https://doi.org/10.1051/cagri/2018017
Publié en ligne 16 mai 2018
  • Bernard L, Chapuis-Lardy L, Razafimbelo T, Razafindrakoto M, Pablo A-L, Legname E, et al. 2012. Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil. ISME Journal 6: 213–22. DOI: 10.1038/ismej.2011.87. [CrossRef] [Google Scholar]
  • Bernoux M, Feller C, Cerri CC, Eschenbrenner V, Cerri CEP. 2005. Soil carbon sequestration. In: Roose EJ, Lal R, Feller C, Barthès B, Stewart BA (eds). Soil erosion and carbon dynamics. Advances in Soil Science. CRC, Taylor and Francis. [Google Scholar]
  • Chen R, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X, et al. 2014. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Global Change Biology 20: 2356–2367. DOI: 10.1111/gcb.12475. [CrossRef] [PubMed] [Google Scholar]
  • Corbeels M, Cardinael R, Naudin K, Guibert H, Torquebiau E. 2018. The 4 per 1000 goal and soil carbon storage under agroforestry and conservation agriculture systems in sub-Saharan Africa. Soil and Tillage Research. DOI: 10.1016/j.still.2018.02.015. [Google Scholar]
  • Dou F, Wight JP, Wilson LT, Storlien JO, Hons FM. 2014. Simulation of biomass yield and soil organic carbon under bioenergy sorghum production. PLoS ONE 9: e115598. DOI: 10.1371/journal.pone.0115598. [CrossRef] [PubMed] [Google Scholar]
  • Ellert BH, Bettany JR. 1995. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Canadian Journal of Soil Science 75: 529–538. [CrossRef] [Google Scholar]
  • FAO. 2010. “Climate-Smart” Agriculture. Policies, practices and financing for food security, adaptation and mitigation. Rome, Italie: FAO, 40 p. [Google Scholar]
  • Fujisaki K, Chevallier T, Chapuis-Lardy L, Albrecht A, Razafimbelo T, Masse D, et al. 2018. Soil carbon stock changes in tropical croplands are mainly driven by carbon inputs: a synthesis. Agriculture, Ecosystems and Environment 259: 147–158. [CrossRef] [Google Scholar]
  • Gay-des-Combes JM, Robroek BJM, Herve D, Guillaume T, Pistocchi C, Mills RTE, et al. 2017. Slash-and-burn agriculture and tropical cyclone activity in Madagascar: implication for soil fertility dynamics and corn performance. Agriculture Ecosystems & Environment 239: 207–218. [CrossRef] [Google Scholar]
  • Johnston AE, Poulton PR, Coleman K. 2009. Soil organic matter: its importance in sustainable agriculture and carbon dioxide fluxes. Advances in Agronomy 101: 2–57. [Google Scholar]
  • Kleinman PJA, Pimentel D, Bryant RB. 1995. The ecological sustainability of slash-and-burn agriculture. Agriculture, Ecosystems and Environment 52: 235–249. [CrossRef] [Google Scholar]
  • Kuzyakov Y, Friedel JK, Stahr K. 2000. Review of mechanisms and quantification of priming effects. Soil Biology and Biochemistry 32: 1485–1498. DOI: 10.1016/S0038-0717(00)00084-5. [CrossRef] [Google Scholar]
  • Lal R. 2016. Beyond COP 21: potential and challenges of the “4 per Thousand” initiative. Journal of Soil and Water Conservation 71: 20A–25A. [CrossRef] [Google Scholar]
  • Lal R, Bruce JP. 1999. The potential of world cropland soils to sequester C and mitigate the greenhouse effect. Environmental Science and Policy 2: 177–185. [CrossRef] [Google Scholar]
  • Lipper L, Thornton P, Campbell BM, Baedeker T, Braimoh A, Bwalya M, et al. 2014. Climate-smart agriculture for food security. Nature Climate Change 4: 1068–1072. [CrossRef] [Google Scholar]
  • Nair PKR, Nair VD, Kumar BM, Haile SC. 2009. Soil carbon sequestration in tropical agroforestry systems: a feasibility appraisal. Environmental Science & Policy 12 (8): 1099–1111. [CrossRef] [Google Scholar]
  • Nambiar KKM. 1995. Major cropping systems in India. In: Barnett V, Payne R, Steiner R (eds). Agricultural sustainability, economic, environmental and statistical considerations. Chichester: J. Wiley & Sons. [Google Scholar]
  • Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P. 2016. Climate-smart soils. Nature 532: 49–57. [CrossRef] [PubMed] [Google Scholar]
  • Poeplau C, Don A. 2015. Carbon sequestration in agricultural soils via cultivation of cover crops. A meta-analysis. Agriculture, Ecosystems and Environment 200: 33–41. [Google Scholar]
  • Powlson DS, Bhogal A, Chambers BJ, Macdonald AJ, Goulding KWT, Whitmore AP. 2012. The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: a case study. Agriculture Ecosystems and Environment 146: 23–33. DOI: 10.1016/j.agee.2011.10.004. [CrossRef] [Google Scholar]
  • Powlson DS, Stirling CM, Jat ML, Gerard BG, Palm CA, Sanchez PA, et al. 2014. Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change 4: 678–683. DOI: 10.1038/nclimate2292. [Google Scholar]
  • Powlson DS, Stirling CM, Thierfelder C, Whited RP, Jate ML. 2016. Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems? Agriculture. Ecosystems and Environment 220: 164–174. [CrossRef] [Google Scholar]
  • Ramiandrisoa S. 2009. Quantification du stock de carbone dans les systèmes agroforestiers en vue d’une simulation de projet financement de crédits carbone : cas de la Région Analanjirofo et Antsinanana. Mémoire d’ingénieur agronome. École supérieure des sciences agronomiques, Université d’Antananarivo. [Google Scholar]
  • Smith P. 2014. Do grasslands act as a perpetual sink for carbon? Global Change Biology 20: 2708–2711. DOI: 10.1111/gcb.12561. [CrossRef] [PubMed] [Google Scholar]
  • Smith JW, Naazie A. 1998. The role of ruminant livestock in soil fertility management in sub-Saharan Africa. In : Lal R (ed). Soil quality and agricultural sustainability. Chelsea, MI: Ann Arbor Press, 214–221. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.