Numéro |
Cah. Agric.
Volume 30, 2021
Agriculture et systèmes alimentaires face à la Covid-19 / Agriculture and Food Systems in the face of COVID-19. Coordonnateurs : Patrick Dugué, Mohamed Taher Sraïri, Jean-Yves Jamin
|
|
---|---|---|
Numéro d'article | 28 | |
Nombre de pages | 7 | |
DOI | https://doi.org/10.1051/cagri/2021016 | |
Publié en ligne | 14 juillet 2021 |
- Alandia G, Rodriguez JP, Jacobsen SE, Bazile D, Condori B. 2020. Global expansion of quinoa and challenges for the Andean region. Global Food Security 26: 10. https://doi.org/10.1016/j.gfs.2020.100429. [Google Scholar]
- Bazile D. 2015. Le quinoa, les enjeux d’une conquête. Versailles (France) : Éd. Quae, 111 p. [Google Scholar]
- Bazile D, Baudron F. 2015. The dynamics of the global expansion of quinoa growing in view of its high biodiversity. In: Bazile D, Bertero HD, Nieto C, eds. State of the art report on quinoa around the world in 2013. Santiago du Chili: FAO, pp. 42–55. http://www.fao.org/quinoa-2013/publications/detail/en/item/278923/icode/?no_mobile=1. [Google Scholar]
- Bazile D, Bertero HD, Nieto C, eds. 2014. Estado del arte de la quinua en el mundo en 2013. Santiago du Chili: FAO; CIRAD, 724 p. http://www.fao.org/quinoa-2013/publications/detail/es/item/279313/icode/?no_mobile=1. [Google Scholar]
- Bazile D, Jacobsen SE, Verniau A. 2016a. The global expansion of quinoa: Trends and limits. Frontiers in Plant Science 7(622): 6. https://doi.org/10.3389/fpls.2016.00622. [PubMed] [Google Scholar]
- Bazile D, Pulvento C, Verniau A, Al-Nusairi M, Ba D, Breidy J, et al. 2016b. Worldwide evaluations of quinoa: Preliminary results from post-international year of quinoa FAO projects in nine countries. Frontiers in Plant Science 7(850): 18. https://doi.org/10.3389/fpls.2016.00850. [PubMed] [Google Scholar]
- Carimentrand A, Baudoin A, Lacroix P, Bazile D, Chia E. 2015. Quinoa trade in Andean countries: Opportunities and challenges for family. In: Bazile D, Bertero HD, Nieto C, eds. State of the art report on quinoa around the world in 2013. Santiago du Chili: FAO; CIRAD, pp. 330–342. http://www.fao.org/quinoa-2013/publications/detail/en/item/278923/icode/?no_mobile=1. [Google Scholar]
- Chevarria-Lazo MA, Bazile D. 2017. Oportunidades para una marca colectiva “Quinua Andina”: perspectivas desde la Red Andina de productores de quinua de Argentina, Bolivia, Chile, Ecuador y Perú. In: VI Congreso Mundial de la Quinua y III Simposio Internacional de Granos Andinos, Peru 2017: Resumenes. Puno: MINAGRI, p. 126. Congreso Mundial de la Quinua. 6, 2017-03-21/2017-03-24, Puno (Pérou). http://repositorio.minagri.gob.pe/handle/MINAGRI/226. [Google Scholar]
- Córdoba D, Peredo AM, Chaves P. 2021. Shaping alternatives to development: Solidarity and reciprocity in the Andes during COVID-19. World Development 139: 105323. https://doi.org/10.1016/j.worlddev.2020.105323. [Google Scholar]
- FAO. 2019. The state of the world’s biodiversity for food and agriculture. In: Bélanger J, Pilling D, eds. Rome: FAO Commission on Genetic Resources for Food and Agriculture Assessments, 572 p. http://www.fao.org/3/CA3129EN/CA3129EN.pdf. [Google Scholar]
- Gomez-Pando L, Mujica A, Chura E, Canahua A, Perez A, Tejada T, et al. 2015. Peru. In: Bazile D, Bertero HD, Nieto C, eds. State of the art report on quinoa around the world in 2013. Santiago du Chili: FAO; CIRAD, pp. 378–387. http://www.fao.org/quinoa-2013/publications/detail/en/item/278923/icode/?no_mobile=1. [Google Scholar]
- IPBES. 2019. In: Brondizio ES, Settele J, Díaz S, Ngo HT, eds. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Bonn, Germany: IPBES Secretariat. [Google Scholar]
- Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. 2008. Global trends in emerging infectious diseases. Nature 451: 990–993. https://doi.org/10.1038/nature06536. [CrossRef] [PubMed] [Google Scholar]
- Kozioł MJ. 1992. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). Journal of Food Composition and Analysis 5(1): 35–68. https://doi.org/10.1016/0889-1575(92)90006-6. [Google Scholar]
- Lainé N, Morand S. 2020. Linking humans, their animals, and the environment again: a decolonized and more-than-human approach to “One Health”. Parasite 27: 10. https://doi.org/10.1051/parasite/2020055. [EDP Sciences] [PubMed] [Google Scholar]
- LCI-International. 2020. Coronavirus : quels sont les pays avec la plus forte mortalité ? [2020/12/17]. https://www.lci.fr/international/carte-coronavirus-taux-de-mortalite-les-pays-les-plus-touches-par-la-pandemie-covid-19-perou-belgique-bresil-espagne-france-slovenie-allemagne-2154174.html. [Google Scholar]
- Liu M, Zhu K, Yao Y, Chen Y, Guo H, Ren G, et al. 2020. Antioxidant, anti-inflammatory, and antitumor activities of phenolic compounds from white, red, and black Chenopodium quinoa seed. Cereal Chemistry 97(3): 703–713. https://doi.org/10.1002/cche.10286. [Google Scholar]
- Morand S. 2016. La prochaine peste, une histoire globale des maladies infectieuses. Paris (France) : Fayard Ed., 304 p. [Google Scholar]
- Morand S. 2020. Emerging diseases, livestock expansion and biodiversity loss are positively related at global scale. Biological Conservation 248: 108707. https://doi.org/10.1016/j.biocon.2020.108707. [PubMed] [Google Scholar]
- Rojas W, Pinto M, Alanoca C, Gomez Pando L, Leon-Lobos P, Alercia A, et al. 2015. In: Bazile D, Bertero HD, Nieto C, eds. State of the art report on quinoa around the world in 2013. Rome: FAO, pp. 56–82. http://www.fao.org/quinoa-2013/publications/detail/en/item/278923/icode/?no_mobile=1. [Google Scholar]
- Ruckelshaus MH, Jackson ST, Mooney HA, Jacobs KL, Kassam KAS, Arroyo MT, et al. 2020. The IPBES Global Assessment: Pathways to Action. Trends in Ecology & Evolution 35(5): 407–414. https://doi.org/10.1016/j.tree.2020.01.009. [PubMed] [Google Scholar]
- Ruiz KB, Biondi S, Oses R, Acuña-Rodríguez IS, Antognoni F, Martinez-Mosqueira EA, et al. 2014. Quinoa biodiversity and sustainability for food security under climate change. A review. Agronomy for Sustainable Development 34(2): 349–359. https://doi.org/10.1007/s13593-013-0195-0. [Google Scholar]
- Schlick G, Bubenheim DL. 1996. Quinoa: candidate crop for NASA’s controlled ecological life support systems. In: Janick J, ed. Progress in new crops. Arlington (VA): ASHS Press, pp. 632–640. [Google Scholar]
- Silvain JF, Goffaux R, Soubelet H, Sarrazin F, Abbadie L, Albert CH, et al. 2020. Mobilisation de la FRB par les pouvoirs publics français sur les liens entre Covid-19 et biodiversité. [Rapport de recherche] FRB, 54 p. https://www.fondationbiodiversite.fr/mobilisation-de-la-frb-par-les-pouvoirs-publics-francais-sur-les-liens-entre-covid-19-et-biodiversite/. [Google Scholar]
- Tschopp M, Bieri S, Rist S. 2018. Quinoa and production rules: how are cooperatives contributing to governance of natural resources? International Journal of the Commons 12(1). https://doi.org/10.18352/ijc.826. [Google Scholar]
- Winkel T, Bommel P, Chevarría-Lazo M, Cortes G, Del Castillo C, Gasselin P, et al. 2016. Panarchy of an indigenous agroecosystem in the globalized market: The quinoa production in the Bolivian Altiplano. Global Environmental Change 39: 195–204. https://doi.org/10.1016/j.gloenvcha.2016.05.007. [Google Scholar]
- Zimmerer KS, de Haan S. 2020. Informal food chains and agrobiodiversity need strengthening – not weakening – to address food security amidst the COVID-19 crisis in South America. Food Security 12(4): 891–894. https://doi.org/10.1007/s12571-020-01088-x. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.