Issue |
Cah. Agric.
Volume 30, 2021
Agriculture et systèmes alimentaires face à la Covid-19 / Agriculture and Food Systems in the face of COVID-19. Coordonnateurs : Patrick Dugué, Mohamed Taher Sraïri, Jean-Yves Jamin
|
|
---|---|---|
Article Number | 28 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/cagri/2021016 | |
Published online | 14 July 2021 |
- Alandia G, Rodriguez JP, Jacobsen SE, Bazile D, Condori B. 2020. Global expansion of quinoa and challenges for the Andean region. Global Food Security 26: 10. https://doi.org/10.1016/j.gfs.2020.100429. [Google Scholar]
- Bazile D. 2015. Le quinoa, les enjeux d’une conquête. Versailles (France) : Éd. Quae, 111 p. [Google Scholar]
- Bazile D, Baudron F. 2015. The dynamics of the global expansion of quinoa growing in view of its high biodiversity. In: Bazile D, Bertero HD, Nieto C, eds. State of the art report on quinoa around the world in 2013. Santiago du Chili: FAO, pp. 42–55. http://www.fao.org/quinoa-2013/publications/detail/en/item/278923/icode/?no_mobile=1. [Google Scholar]
- Bazile D, Bertero HD, Nieto C, eds. 2014. Estado del arte de la quinua en el mundo en 2013. Santiago du Chili: FAO; CIRAD, 724 p. http://www.fao.org/quinoa-2013/publications/detail/es/item/279313/icode/?no_mobile=1. [Google Scholar]
- Bazile D, Jacobsen SE, Verniau A. 2016a. The global expansion of quinoa: Trends and limits. Frontiers in Plant Science 7(622): 6. https://doi.org/10.3389/fpls.2016.00622. [PubMed] [Google Scholar]
- Bazile D, Pulvento C, Verniau A, Al-Nusairi M, Ba D, Breidy J, et al. 2016b. Worldwide evaluations of quinoa: Preliminary results from post-international year of quinoa FAO projects in nine countries. Frontiers in Plant Science 7(850): 18. https://doi.org/10.3389/fpls.2016.00850. [PubMed] [Google Scholar]
- Carimentrand A, Baudoin A, Lacroix P, Bazile D, Chia E. 2015. Quinoa trade in Andean countries: Opportunities and challenges for family. In: Bazile D, Bertero HD, Nieto C, eds. State of the art report on quinoa around the world in 2013. Santiago du Chili: FAO; CIRAD, pp. 330–342. http://www.fao.org/quinoa-2013/publications/detail/en/item/278923/icode/?no_mobile=1. [Google Scholar]
- Chevarria-Lazo MA, Bazile D. 2017. Oportunidades para una marca colectiva “Quinua Andina”: perspectivas desde la Red Andina de productores de quinua de Argentina, Bolivia, Chile, Ecuador y Perú. In: VI Congreso Mundial de la Quinua y III Simposio Internacional de Granos Andinos, Peru 2017: Resumenes. Puno: MINAGRI, p. 126. Congreso Mundial de la Quinua. 6, 2017-03-21/2017-03-24, Puno (Pérou). http://repositorio.minagri.gob.pe/handle/MINAGRI/226. [Google Scholar]
- Córdoba D, Peredo AM, Chaves P. 2021. Shaping alternatives to development: Solidarity and reciprocity in the Andes during COVID-19. World Development 139: 105323. https://doi.org/10.1016/j.worlddev.2020.105323. [Google Scholar]
- FAO. 2019. The state of the world’s biodiversity for food and agriculture. In: Bélanger J, Pilling D, eds. Rome: FAO Commission on Genetic Resources for Food and Agriculture Assessments, 572 p. http://www.fao.org/3/CA3129EN/CA3129EN.pdf. [Google Scholar]
- Gomez-Pando L, Mujica A, Chura E, Canahua A, Perez A, Tejada T, et al. 2015. Peru. In: Bazile D, Bertero HD, Nieto C, eds. State of the art report on quinoa around the world in 2013. Santiago du Chili: FAO; CIRAD, pp. 378–387. http://www.fao.org/quinoa-2013/publications/detail/en/item/278923/icode/?no_mobile=1. [Google Scholar]
- IPBES. 2019. In: Brondizio ES, Settele J, Díaz S, Ngo HT, eds. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Bonn, Germany: IPBES Secretariat. [Google Scholar]
- Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. 2008. Global trends in emerging infectious diseases. Nature 451: 990–993. https://doi.org/10.1038/nature06536. [CrossRef] [PubMed] [Google Scholar]
- Kozioł MJ. 1992. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). Journal of Food Composition and Analysis 5(1): 35–68. https://doi.org/10.1016/0889-1575(92)90006-6. [Google Scholar]
- Lainé N, Morand S. 2020. Linking humans, their animals, and the environment again: a decolonized and more-than-human approach to “One Health”. Parasite 27: 10. https://doi.org/10.1051/parasite/2020055. [EDP Sciences] [PubMed] [Google Scholar]
- LCI-International. 2020. Coronavirus : quels sont les pays avec la plus forte mortalité ? [2020/12/17]. https://www.lci.fr/international/carte-coronavirus-taux-de-mortalite-les-pays-les-plus-touches-par-la-pandemie-covid-19-perou-belgique-bresil-espagne-france-slovenie-allemagne-2154174.html. [Google Scholar]
- Liu M, Zhu K, Yao Y, Chen Y, Guo H, Ren G, et al. 2020. Antioxidant, anti-inflammatory, and antitumor activities of phenolic compounds from white, red, and black Chenopodium quinoa seed. Cereal Chemistry 97(3): 703–713. https://doi.org/10.1002/cche.10286. [Google Scholar]
- Morand S. 2016. La prochaine peste, une histoire globale des maladies infectieuses. Paris (France) : Fayard Ed., 304 p. [Google Scholar]
- Morand S. 2020. Emerging diseases, livestock expansion and biodiversity loss are positively related at global scale. Biological Conservation 248: 108707. https://doi.org/10.1016/j.biocon.2020.108707. [PubMed] [Google Scholar]
- Rojas W, Pinto M, Alanoca C, Gomez Pando L, Leon-Lobos P, Alercia A, et al. 2015. In: Bazile D, Bertero HD, Nieto C, eds. State of the art report on quinoa around the world in 2013. Rome: FAO, pp. 56–82. http://www.fao.org/quinoa-2013/publications/detail/en/item/278923/icode/?no_mobile=1. [Google Scholar]
- Ruckelshaus MH, Jackson ST, Mooney HA, Jacobs KL, Kassam KAS, Arroyo MT, et al. 2020. The IPBES Global Assessment: Pathways to Action. Trends in Ecology & Evolution 35(5): 407–414. https://doi.org/10.1016/j.tree.2020.01.009. [PubMed] [Google Scholar]
- Ruiz KB, Biondi S, Oses R, Acuña-Rodríguez IS, Antognoni F, Martinez-Mosqueira EA, et al. 2014. Quinoa biodiversity and sustainability for food security under climate change. A review. Agronomy for Sustainable Development 34(2): 349–359. https://doi.org/10.1007/s13593-013-0195-0. [Google Scholar]
- Schlick G, Bubenheim DL. 1996. Quinoa: candidate crop for NASA’s controlled ecological life support systems. In: Janick J, ed. Progress in new crops. Arlington (VA): ASHS Press, pp. 632–640. [Google Scholar]
- Silvain JF, Goffaux R, Soubelet H, Sarrazin F, Abbadie L, Albert CH, et al. 2020. Mobilisation de la FRB par les pouvoirs publics français sur les liens entre Covid-19 et biodiversité. [Rapport de recherche] FRB, 54 p. https://www.fondationbiodiversite.fr/mobilisation-de-la-frb-par-les-pouvoirs-publics-francais-sur-les-liens-entre-covid-19-et-biodiversite/. [Google Scholar]
- Tschopp M, Bieri S, Rist S. 2018. Quinoa and production rules: how are cooperatives contributing to governance of natural resources? International Journal of the Commons 12(1). https://doi.org/10.18352/ijc.826. [Google Scholar]
- Winkel T, Bommel P, Chevarría-Lazo M, Cortes G, Del Castillo C, Gasselin P, et al. 2016. Panarchy of an indigenous agroecosystem in the globalized market: The quinoa production in the Bolivian Altiplano. Global Environmental Change 39: 195–204. https://doi.org/10.1016/j.gloenvcha.2016.05.007. [Google Scholar]
- Zimmerer KS, de Haan S. 2020. Informal food chains and agrobiodiversity need strengthening – not weakening – to address food security amidst the COVID-19 crisis in South America. Food Security 12(4): 891–894. https://doi.org/10.1007/s12571-020-01088-x. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.