Issue
Cah. Agric.
Volume 30, 2021
Oil palm in Mexico and in the Americas / Le palmier à huile au Mexique et en Amérique latine Coordonnateurs : Laurène Feintrenie, Cesar J. Vázquez Navarrete, Luz del Carmen Lagunes Espinoza
Article Number 47
Number of page(s) 7
DOI https://doi.org/10.1051/cagri/2021033
Published online 02 December 2021
  • Aljuboori AHR. 2013. Oil palm biomass residue in Malaysia: availability and sustainability. International Journal of Biomass & Renewables 2(1): 13–18. [Google Scholar]
  • Arias ANA, Mata GB, González SMV. 2014. Innovación participativa en palma de aceite en México y propuestas para su perdurabilidad, 1ar ed. Universidad Autónoma de Chapingo: CISSMER, 252 p. [Google Scholar]
  • Basile-Doelsch I, Balesdent J, Pellerin S. 2017. Reviews and syntheses: the mechanisms underlying carbon storage in soil. Biogeosciences 17: 5223–5242. https://doi.org/10.5194/bg-17-5223-2020. [Google Scholar]
  • Blake GR, Hartge KH. 1986. Bulk density. In: Klute A, ed. Methods of soil analysis. Part I. Physical and mineralogical methods, 2nd ed. American Society of Agronomy and SSSA: Agronomy Monograph, Madison, Wisconsin, USA, n°9, pp. 363–375. [Google Scholar]
  • Borchard N, Bulusu M, Meyer N, Rodionov A, Herawati H, Blagodatsky S, et al. 2019. Deep soil carbon storage in tree-dominated land use systems in tropical lowlands of Kalimantan. Geoderma 354: 113864. [Google Scholar]
  • Brad A, Schaffartzik A, Pichler M, Plank C. 2015. Contested territorialisation and biophysical expansion of oil palm plantations in Indonesia. Geoforum 64: 100–111. https://doi.org/10.1016/j.geoforum.2015.06.007. [Google Scholar]
  • Brindis-Santos AI, Palma-López DJ, Zavala-Cruz J, Mata-Zayas EE, López-Bustamante YI. 2020. Paisajes geomorfológicos relacionados con la clasificación de los suelos en Planicies y Terrazas de Tabasco, México. Boletín de la Sociedad Geológica Mexicana 72: 1–17. https://doi.org/10.18268/BSGM2020v72n1a090919. [Google Scholar]
  • Carlson K, Curran L, Asner G, Pittman A, Trigg S, Adeney JM. 2013. Carbon emissions from forest conversion by Kalimantan oil palm plantations. Nature Climate Change 3: 283–287. https://doi.org/10.1038/nclimate1702. [Google Scholar]
  • Carron MP, Auriac Q, Snoeck D, Villenave C, Blanchart E, Ribeyre F, et al. 2015. Spatial heterogeneity of soil quality around mature oil palms receiving mineral fertilisation. European Journal of Soil Biology 66: 24–31. https://doi.org/10.1016/j.ejsobi.2014.11.005. [Google Scholar]
  • Compte I, Colin F, Whalen JK, Grünberger O, Caliman JP. 2012. Agricultural practices in oil palm plantations and their impact on hydrological changes, nutrient fluxes and water quality in Indonesia: A review. Advances in Agronomy 116: 71–124. https://doi.org/10.1016/B978-0-12-394277-7.00003-8. [Google Scholar]
  • De Carvalho WR, Vasconcelos SS, Kato OR, Capela CJB, Castellani DC. 2014. Short-term changes in the soil carbon stocks of young oil palm-based agroforestry systems in the eastern Amazon. Agroforestry Systems 88: 357–368. https://doi.org/10.1007/s10457-014-9689-2. [Google Scholar]
  • Etchevers JD, Monreal CM, Hidalgo C, Acosta M, Padilla J, López RM. 2005. Manual para la Determinación de Carbono en la Parte Aérea y Subterránea de Sistemas de Producción en Laderas, 1ra ed. México: Colegio de Postgraduados, 29 p. [Google Scholar]
  • Fan JL, McConkey B, Janzen H, Townley-Smith L, Wang H. 2017. Harvest index-yield relationship for estimating crop residue in cold continental climates. Field Crops Research 204: 153–157. https://doi.org/10.1016/j.fcr.2017.01.014. [Google Scholar]
  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. 2008. Land clearing and the biofuel carbon debt. Science 319: 1235–1238. https://doi.org/10.1126/science.1152747. [Google Scholar]
  • Food and Agriculture Organization of the United Nations. 1997. FAOSTAT statistical database. Rome. [2020/02/12] http://www.fao.org/faostat/es/#data/QC. [Google Scholar]
  • Frazão LA, Paustian K, Pellegrino CCE, Cerri CC. 2013. Soil carbon stocks and changes after oil palm introduction in the Brazilian Amazon. GCB Bioenergy 5: 384–390. https://doi.org/10.1111/j.1757-1707.2012.01196.x. [Google Scholar]
  • Frazão LA, Paustian K, Pellegrino CCE, Cerri CC. 2014. Soil carbon stocks under oil palm plantations in Bahia State, Brazil. Biomass & Bionergy 62: 1–7. https://doi.org/10.1016/j.biombioe.2014.01.031. [Google Scholar]
  • García E. 2004. Modificación al sistema de clasificación climática de Köppen. Instituto de Geografía. UNAM, Distrito Federal, México, 91 p. [Google Scholar]
  • Germer J, Sauerborn J. 2008. Estimation of the impact of oil palm plantation establishment on greenhouse gas balance. Environment Development and Sustainability 10: 697–716. https://doi.org/10.1007/s10668-006-9080-1. [Google Scholar]
  • Goodrick I, Nelson PN, Banabas M, Wurster CM, Bird MI. 2015. Soil carbon balance following conversion of grassland to oil palm. GCB Bioenergy 7(2): 263–272. https://doi.org/10.1111/gcbb.12138. [Google Scholar]
  • Haron K, Brookes PC, Anderson JM, Zakaria ZZ. 1998. Microbial biomass and soil organic matter dynamics in oil palm (Elaeis guineensis Jacq.) plantations, West Malaysia. Soil Biology & Biochemistry 30: 547–552. https://doi.org/10.1016/S0038-0717(97)00217-4. [Google Scholar]
  • Hernández-Rojas D, López-Barrera F, Bonilla-Moheno M. 2018. Análisis preliminar de la dinámica de uso del suelo asociada al cultivo palma de aceite (Elaeis guineensis) en México. Agrociencia 52: 875–893. [Google Scholar]
  • IUSS Working Group WRB. 2014. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No.106. Rome, Italy: FAO, 181 p. [Google Scholar]
  • Katterer T, Bolinder MA, Andren O, Kirchmann H, Menichetti L. 2011. Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agriculture, Ecosystems & Environment 141: 184–192. https://doi.org/10.1016/j.agee.2011.02.029. [Google Scholar]
  • Khasanah NM, van Noordwijk M, Ningsih H, Rahayu S. 2015. Carbon neutral? No change in mineral soil carbon stock under oil palm plantations derived from forest or non-forest in Indonesia. Agriculture, Ecosystems & Environment 211: 195–206. https://doi.org/10.1016/j.agee.2015.06.009. [Google Scholar]
  • Kho LK, Jepsen MR. 2015. Carbon stock of oil palm plantations and tropical forests in Malaysia: A review. Singapore Journal of Tropical Geography 36(2): 249–266. https://doi.org/10.1111/sjtg.12100. [Google Scholar]
  • Leblanc HA, Russo RO. 2008. Carbon Sequestration in an Oil Palm Crop System (Elaeis guineensis) in the Caribbean Lowlands of Costa Rica. Proceedings of the Florida State Horticultural Society 121: 52–54. [Google Scholar]
  • Nelson PN, Webb MJ, Banabas M, Nake S, Goodrick I, Gordon J, et al. 2013. Methods to account for tree-scale variability in soil- and plant-related parameters in oil palm plantations. Plant Soil 374: 459–471. https://doi.org/10.1007/s11104-013-1894-7. [Google Scholar]
  • Rahman N, de Neergaard A, Magid J, van de Ven GW, Giller KE, Bruun TB. 2018. Changes in soil organic carbon stocks after conversion from forest to oil palm plantations in Malaysian Borneo. Environmental Research Letters 13: 101–10. https://doi.org/10.1088/1748-9326/aade0f. [Google Scholar]
  • Ramos HMN, Vasconcelos SS, Kato OR, Castellani DC. 2017. Above-and belowground carbon stocks of two organic, agroforestry-based oil palm production systems in eastern Amazonia. Agroforestry Systems 92(2): 221–237. https://doi.org/10.1007/s10457-017-0131-4. [Google Scholar]
  • Rüegg J, Quezada JC, Santonja M, Ghazoul J, Kuzyakov Y, Buttler A, et al. 2019. Drivers of soil carbon stabilisation in oil palm plantations. Land Degradation & Development 30(16): 1904–1915. https://doi.org/10.1002/ldr.3380. [Google Scholar]
  • Ruíz-Blandon BA, Hernández-Álvarez E, Salcedo-Pérez E, Rodríguez-Macías R, Gallegos-Rodríguez A, Valdés-Velarde E, et al. 2019. Almacenamiento de carbono y caracterización lignocelulósica de plantaciones comerciales de Tectona grandis Lf en México. Colombia Forestal 22(2): 15–29. https://doi.org/10.14483/2256201X.13874. [Google Scholar]
  • Sánchez-Munguía A. 2005. Uso del suelo agropecuario y deforestación en Tabasco 1950-2000: Universidad Juárez Autónoma de Tabasco, División de Ciencias Biológicas, 123 p. [Google Scholar]
  • Salazar-Conde EC, Zavala-Cruz J, Castillo-Acosta O, Cámara-Artigas R. 2004. Evaluación espacial y temporal de la sierra madrigal, Tabasco, México (1973–2003). Investigaciones geográficas, Boletín del Instituto de Geografía 54: 7–23. [Google Scholar]
  • Servicio de Información Agroalimentaria y Pesquera (SIAP). 2020. https://www.gob.mx/siap/acciones-y-programas/produccion-agricola-33119. [Google Scholar]
  • Stichnothe H, Bessou C. 2017. Challenges for life cycle assessment of palm oil production system. Indonesian Journal of Life Cycle Assessment and Sustainability 1(2): 1–9. https://doi.org/10.52394/ijolcas.v1i2.28. [Google Scholar]
  • Zaro GC, Caramori PH, Junior GMY, Sanquetta CR, Androcioli Filho A, Nunes AL, et al. 2020. Carbon sequestration in an agroforestry system of coffee with rubber trees compared to open-grown coffee in southern Brazil. Agroforestry Systems 94: 799–809. https://doi.org/10.1007/s10457-019-00450-z. [Google Scholar]
  • Zavala-Cruz J, Jiménez RR, Palma-López DJ, Bautista ZF, Gavi RF. 2016. Paisajes geomorfológicos: base para el levantamiento de suelos en Tabasco, México. Ecosistemas y Recursos Agropecuarios 3: 161–171. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.