Numéro |
Cah. Agric.
Volume 33, 2024
Réduire l’utilisation des pesticides agricoles dans les pays du Sud : verrous et leviers socio-techniques / Reducing the use of agricultural pesticides in Southern countries: socio-technical barriers and levers. Coordonnateurs : Ludovic Temple, Nathalie Jas, Fabrice Le Bellec, Jean-Noël Aubertot, Olivier Dangles, Jean-Philippe Deguine, Catherine Abadie, Eveline Compaore Sawadogo, François-Xavier Cote
|
|
---|---|---|
Numéro d'article | 5 | |
Nombre de pages | 11 | |
DOI | https://doi.org/10.1051/cagri/2023025 | |
Publié en ligne | 6 février 2024 |
- Bayiha G de la P. 2020. Développement de l’agriculture biologique au Cameroun : une analyse par l’approche des transitions sociotechniques. Gabon, France: Université de Yaoundé II, Université de Montpellier, 217 p. [Google Scholar]
- Bayiha G de la P, Temple L, Mathé S. 2020. Diversité des trajectoires de l’agriculture biologique au Cameroun. In: Fatiha F, ed. Systèmes alimentaires. Paris (France): Classiques Garnier, pp. 121–204. DOI: 10.15122/isbn.978-2-406-11062-0.p.0181. [Google Scholar]
- Bergek A, Jacobsson S, Carlsson B, Lindmark S, Rickne A. 2008. Analyzing the functional dynamics of technological innovation systems: A scheme of analysis. Research Policy 37(3): 407–429. DOI: 10.1016/j.respol.2007.12.003. [CrossRef] [Google Scholar]
- Borrás S, Edler J. 2014. Introduction: On governance, systems and change. In: The Governance of Socio-Technical Systems. Cheltenham (UK): Edward Elgar Publishing, pp. 1–22. DOI: 10.4337/9781784710194.00010. [Google Scholar]
- Boulestreau Y, Peyras CL, Casagrande M, Navarrete M. 2022. Tracking down coupled innovations supporting agroecological vegetable crop protection to foster sustainability transition of agrifood systems. Agricultural Systems 196: 103354. DOI: 10.1016/j.agsy.2021.103354. [CrossRef] [Google Scholar]
- Brenner C. 1997. Politiques de biotechnologie pour l’agriculture des pays en développement. Cahiers de politique économique du Centre de Développement de l’OCDE 14: 36. DOI: 10.1787/2077169X. [Google Scholar]
- Bureau-Point E, Temple L. 2022. La recherche en sciences humaines et sociales sur l’objet pesticide dans le cadre académique français : état des lieux et perspectives. VertigO − la revue électronique en sciences de l’environnement 22(2): 38765. DOI: 10.4000/vertigo.38765. [Google Scholar]
- Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP. 2011. The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society B: Biological Sciences 366(1573): 1987–1998. DOI: 10.1098/rstb.2010.0390. [CrossRef] [PubMed] [Google Scholar]
- Chung C. 2018. Technological innovation systems in multi-level governance frameworks: The case of Taiwan’s biodiesel innovation system (1997–2016). Journal of Cleaner Production 184: 130–142. DOI: 10.1016/j.jclepro.2018.02.185. [CrossRef] [Google Scholar]
- Davillerd Y, Marchand PA. 2022. Les substances naturelles à usage biostimulant : statut réglementaire et état des lieux de ces préparations naturelles peu préoccupantes (PNPP). Cahiers Agricultures 31: 28. DOI: 10.1051/cagri/2022025. [CrossRef] [EDP Sciences] [Google Scholar]
- de Boon A, Sandström C, Rose DC. 2022. Governing agricultural innovation: A comprehensive framework to underpin sustainable transitions. Journal of Rural Studies 89: 407–422. DOI: 10.1016/j.jrurstud.2021.07.019. [CrossRef] [Google Scholar]
- Deguine JP. 2023. Lutte biologique et biocontrôle : un besoin de clarification. Cahiers Agricultures 32: 11. DOI: 10.1051/cagri/2023004. [CrossRef] [EDP Sciences] [Google Scholar]
- Deravel J, Krier F, Jacques P. 2014. Les biopesticides, compléments et alternatives aux produits phytosanitaires chimiques (synthèse bibliographique). Biotechnologie, Agronomie, Société et Environnement 18(2): 200–232. [Google Scholar]
- Douthwaite B, Ashby J. 2005. Innovation Histories: A method from learning from experience. ILAC Briefs 5: 4 p. [Google Scholar]
- FAO. 2023. AGROVOC. https://www.fao.org/agrovoc/fr. [Google Scholar]
- FAO, CABI. 2017. How to manage fall armyworm (Spodoptera frugiperda). Rome (Italie): FAO. https://www.fao.org/3/I7839en/i7839en.pdf. [Google Scholar]
- Goulet F. 2021. Characterizing alignments in socio-technical transitions. Lessons from agricultural bio-inputs in Brazil. Technology in Society 65: 101580. DOI: 10.1016/j.techsoc.2021.101580. [CrossRef] [Google Scholar]
- Guillemette T, Bastide F. 2022. Les champignons Trichoderma, des bienfaiteurs pour notre société. The Conversation. https://theconversation.com/les-champignons-trichoderma-des-bienfaiteurs-pour-notre-societe-184993. [Google Scholar]
- Hekkert MP, Suurs RAA, Negro SO, Kuhlmann S, Smits REHM. 2007. Functions of innovation systems: A new approach for analysing technological change. Technological Forecasting and Social Change 74(4): 413–432. DOI: 10.1016/j.techfore.2006.03.002. [Google Scholar]
- Hermans F, Geerling-Eiff F, Potters J, Klerkx L. 2019. Public-private partnerships as systemic agricultural innovation policy instruments − Assessing their contribution to innovation system function dynamics. NJAS − Wageningen Journal of Life Sciences 88: 76–95. DOI: 10.1016/j.njas.2018.10.001. [CrossRef] [Google Scholar]
- Jas N. 2014. Gouverner les substances chimiques dangereuses dans les espaces internationaux. In: Pestré D, ed., Le gouvernement des technosciences. Gouverner le progrès et ses dégâts depuis 1945. Paris (France): La Découverte pp. 31–63. DOI: 10.3917/dec.pest.2014.01.0031. [Google Scholar]
- Korangi Alleluya V, Kubindana G, Fingu Mabola J, Sulu A, Kasereka G, Matamba A, et al. 2021. Utilisation des biopesticides pour une agriculture durable en République Démocratique du Congo (Synthèse bibliographique). Revue Africaine d’Environnement et d’Agriculture 2: 53–67. [Google Scholar]
- Lanahan L, Feldman MP. 2015. Multilevel innovation policy mix: A closer look at state policies that augment the federal SBIR program. Research Policy 44(7): 1387–1402. DOI: 10.1016/j.respol.2015.04.002. [CrossRef] [Google Scholar]
- Laperche B. 2009. Stratégies d’innovation des firmes des sciences de la vie et appropriation des ressources végétales : processus et enjeux. Mondes en développement 147(3): 109–122. DOI: 10.3917/med.147.0109. [CrossRef] [Google Scholar]
- Leeuwis C, Klerkx L, Schut M. 2018. Reforming the research policy and impact culture in the CGIAR: Integrating science and systemic capacity development. Global Food Security 16: 17–21. DOI: 10.1016/j.gfs.2017.06.002. [CrossRef] [Google Scholar]
- Madsen S, Bezner Kerr R, Shumba L, Dakishoni L. 2021. Agroecological practices of legume residue management and crop diversification for improved smallholder food security, dietary diversity and sustainable land use in Malawi. Agroecology and Sustainable Food Systems 45(2): 197–224. DOI: 10.1080/21683565.2020.1811828. [CrossRef] [Google Scholar]
- Mahob RJ, Ndoumbe-Nkeng M, Hoopen GT, Dibog L, Nyasse S, Rutherford M, et al. 2014. Pesticides use in cocoa sector in Cameroon: characterization of supply source, nature of actives ingredients, fashion and reasons for their utilization. International Journal of Biological and Chemical Sciences 8(5): 1976–1989. DOI: 10.4314/ijbcs.v8i5.3. [Google Scholar]
- Mboussi SB, Ambang Z, Kakam S, Bagny Beilhe L. 2018. Control of cocoa mirids using aqueous extracts of Thevetia peruviana and Azadirachta indica. Cogent Food & Agriculture 4(1): 1430470. DOI: 10.1080/23311932.2018.1430470. [Google Scholar]
- Nations unies. 1992. Convention sur la diversité biologique. https://www.cbd.int/convention/text/. [Google Scholar]
- Ndoungue M, Petchayo S, Techou Z, Nana WG, Nembot C, Fontem D, et al. 2018. The impact of soil treatments on black pod rot (caused by Phytophthora megakarya) of cacao in Cameroon. Biological Control 123: 9–17. DOI: 10.1016/j.biocontrol.2018.04.016. [CrossRef] [Google Scholar]
- Ogolla E. 2017. FAO’s position on the use of pesticides to combat fall armyworm. Rome (Italy): FAO, 2 p. https://www.fao.org/3/i8022e/i8022e.pdf. [Google Scholar]
- Parsa S, Morse S, Bonifacio A, Chancellor TCB, Condori B, Crespo-Pérez V, et al. 2014. Obstacles to integrated pest management adoption in developing countries. Proceedings of the National Academy of Sciences 111(10): 3889–3894. DOI: 10.1073/pnas.1312693111. [CrossRef] [PubMed] [Google Scholar]
- Samada LH, Tambunan USF. 2020. Biopesticides as promising alternatives to chemical pesticides: A review of their current and future status. OnLine Journal of Biological Sciences 20(2): 66–76. DOI: 10.3844/ojbsci.2020.66.76. [CrossRef] [Google Scholar]
- Schreinemachers P, Tipraqsa P. 2012. Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 37(6): 616–626. DOI: 10.1016/j.foodpol.2012.06.003. [CrossRef] [Google Scholar]
- Silvie PJ, Martin P, Huchard M, Keip P, Gutierrez A, Sarter S. 2021. Prototyping a knowledge-based system to identify botanical extracts for plant health in Sub-Saharan Africa. Plants 10(5): 896. DOI: 10.3390/plants10050896. [CrossRef] [PubMed] [Google Scholar]
- Struelens QF, Rivera M, Zabalaga MA, Ccanto R, Tarqui RQ, Mina D, et al. 2022. Pesticide misuse among small Andean farmers stems from pervasive misinformation by retailers. PLOS Sustainability and Transformation 1(6): e0000017. DOI: 10.1371/journal.pstr.0000017. [CrossRef] [Google Scholar]
- Suurs RAA. 2009. Motors of sustainable innovation: Towards a theory on the dynamics of technological innovation systems. Utrecht (The Netherlands): Utrecht University, 304 p. http://localhost/handle/1874/33346. [Google Scholar]
- Tapsoba PK, Aoudji AKN, Kabore M, Kestemont MP, Legay C, Achigan-Dako EG. 2020. Sociotechnical context and agroecological transition for smallholder farms in Benin and Burkina Faso. Agronomy 10(9): 1447. DOI: 10.3390/agronomy10091447. [CrossRef] [Google Scholar]
- Tondje PR, Roberts DP, Bon MC, Widmer T, Samuels GJ, Ismaiel A, et al. 2007. Isolation and identification of mycoparasitic isolates of Trichoderma asperellum with potential for suppression of black pod disease of cacao in Cameroon. Biological Control 43(2): 202–212. DOI: 10.1016/j.biocontrol.2007.08.004. [CrossRef] [Google Scholar]
- USAID. 2009. STCP Summary. 11 p. https://cgspace.,cgiar.,org/bitstream/handle/10568/90924/U09RepStcpSummaryNothomNodev.pdf?sequence=1&isAllowed=y. [Google Scholar]
- Velarde SJ, Tomich TP. 2006. Sustainable tree crops programme in Africa. ASB impact cases 1. ASB-partnership for the tropical forest margins and world agroforestry centre, Nairobi, Kenya. 7 p. http://www.asb.cgiar.org/PDFwebdocs/ASB-Impact-Cases-1-STCP.pdf. [Google Scholar]
- Widmer TL. 2014. Screening Trichoderma species for biological control activity against Phytophthora ramorum in soil. Biological Control 79: 43–48. DOI: 10.1016/j.biocontrol.2014.08.003. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.